دوزنمکه طب جنوب
پژوهشکده زیست-پزشکی خلیج فارس
مرکز تحقیقات طب گرمسیری و غنی‌پزشکی خلیج فارس
دانشگاه علوم پزشکی و خدمات بهداشتی درمانی بوشهر
سال پاژوهشی 1387
115 - 108

غربال‌گری فرآورده‌های حاصل از استرپتوپاپس‌ها با استفاده از تکنیک
کشتن سلولی به منظور شناسایی مواد آنتی‌تومور

درک سید ناجی خشت۱، سهیر صالحی۲، دکتر نسرین معممی۳

استادیار باکتری‌شناسی، گروه میکروب‌شناسی و انگل‌شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی بوشهر

گزارش‌نامه ارث‌یافته باکتری‌شناسی، دانشگاه آزاد اسلامی واحد کازرون

استادیار میکروب‌شناسی، پژوهشکده بیوتکنولوژی، سازمان پژوهوهای علمی و صنعتی ایران- تهران

چکیده
زمینه: بافتی مواد آنتی‌تومور جدیدی از اهمیت خاصی در جهت درمان و مبارزه با سرطان برخوردار است. استرپتوپاپس‌ها از مهم‌ترین میکروب‌های دیده‌بالی‌های تولید کننده مواد آنتی‌تومور می‌باشند. هدف از این مطالعه، بافتی مواد آنتی‌تومور در استرپتوپاپس‌های جدا شده از خاک توسط تکنیک کشت سلولی بود.

مواد و روش‌ها: نمونه‌برداری مواد تولیدکننده آنتی‌تومور از گل‌های طبیعی بوشهر می‌باشد. در این مطالعه، از استرپتوپاپس‌های میکروب‌شناسی استفاده می‌شود.

کشتن سلولی: این تحقیق به منظور شناسایی مواد انتی‌تومور استفاده می‌شود. ابتدا، میکروب‌ها به صورت طبیعی در خاک قرار گرفته و سپس به صورت غیرطبیعی در محیط سلولی کشت می‌شوند. در این مطالعه، استرپتوپاپس‌های بدون تولید قطعی مواد آنتی‌تومور مورد بررسی قرار گرفته‌اند.

نتایج: نتیجه‌گیری‌های شده از این تحقیق نشان داد که استرپتوپاپس‌های بدون قطعی مواد آنتی‌تومور، به عنوان مواد مفید برای درمان سرطان ممکن است.

پژوهشگران: Email: tajbakhshsaeed@yahoo.com

*درخواست شما به توجه می‌آید.
مقدمه

سرطان بیماری مهلكتی است که بشر از دیرپای با آن درگیر می‌گردد. برای درمان این بیماری، تا در زبان سنتی ایرانی شناخته می‌شود که این درمان شامل استفاده از قرص‌های ضد بیماری‌ها (مثلاً اکتیومیسین D و پرووکولس (Streptomyces purvulus)) است. با این حال، استفاده از این کمک‌های فیزیولوژی مرسوم و هواپیمایی بیماران همچنان در کنش است. در کشف داروهای جدید، درمان‌های جدیدی برای درمان بیماران مطرح می‌شود. در این مقاله، تحقیقی نشان می‌دهد که درمان‌های جدیدی برای درمان بیماری‌های جدیدی از استرپتوکیناس می‌تواند به دست آورد.

یک گروه از مهم‌ترین داروها در زمینه شیمی درمان‌های جدیدی برای درمان بیماری‌های جدیدی مطرح می‌شود. آنتی‌بیوتیک‌ها (S. antibioticus) تولید می‌گردد، که از استرپتوکیناسیم‌ها و همچنین بکتری‌های مایع است. این بکتری‌ها به نام آنتی‌بیوتیک‌های ضد بیماری‌ها (به عبارتی استرپتوکیناسیم‌ها) می‌گویند. این بکتری‌ها به نام ارگانیسم‌ها شناخته می‌شود. در این مقاله، تحقیقی برای درمان بیماری‌های جدیدی از استرپتوکیناس می‌باشد.

مطالعه‌ای از نژاد استرپتوکیناسیم‌ها را در دانشگاه تجربی ژنیک دانست. به این ترتیب، نمونه‌هایی از استرپتوکیناسیم‌ها در آزمایشگاه‌های مختلف در دانشگاه تجربی ژنیک روانه شدند. در این مطالعه، استفاده از استرپتوکیناسیم‌ها برای درمان بیماری‌های جدیدی مطرح می‌شود. استفاده از استرپتوکیناسیم‌ها در درمان بیماری‌های جدیدی مطرح می‌شود. در این مطالعه، استفاده از استرپتوکیناسیم‌ها برای درمان بیماری‌های جدیدی مطرح می‌شود. در این مطالعه، استفاده از استرپتوکیناسیم‌ها برای درمان بیماری‌های جدیدی مطرح می‌شود.
مواد و روش کار
قبول با به کارگیری روش‌های ویژه جداسازی، ۱۲۵ گونه مجهول استرپتومایس از خان جداسازی شده بود. جفت غربال‌گری فرآورده این باکتری به منظور شناسایی مواد آنتی تومور، لازم بود که فرآورده‌های تحمیری (fermentation broth) تولید شود. با توجه به اینکه این تومورها متابولیت ثانویه هستند (۱۶ و ۱۷) و در فاز ثانی رشد باکتری تولید می‌گردد، در مرحله اول لازم بود که منحني رشد استرپتومایس تهیه گردد.
الف- منحني رشد
منحني رشد برای یکی از استرپتومایس‌های جدای
۴ شده به این صورت تهیه شد: محيط ISP-4 (International Streptomyces project) در یک لوله آزمایش برگ رشته تهیه گردید و استرپتومایس بر روی آن کشت داده شد. پس از ۴ روز، استرپتومایس به خوبی روز این محيط اسپروف تولید نمود. سپس اسپورهای موجود بر روی سطح محيط را به وسیله محيط ماياع SPF (Sporolation Broth) اسپور تهیه شد و نهایتاً غلظت آن به میزان ۱۰۷ اسپور در ميلي لتر تبلور گردید. در مرحله بعد به طور جداگانه ۲/۵ ميلي لتر از اين محيط SPF اسپور در ۱۶ عدد ارلن ۵۰ ميلي لتر تهیه شد که این ارلن‌ها حاوي ۵۰ ميلي لتر محيط SPF
علی لیری انتقال یافت. محیط کشت تولیدی، محیط باعث بی‌مانی بود. این محیط با همان شرايط در انکوباتور شکر در قرار گرفت با این تفاوت که مدت زمان انکوباسیون حدوداً ۵ روز در نظر گرفته شد. استرپتومایس در این مدت وارد فاز ناپاench KE Ra بالاست. چنان‌‌چه رشته و متاولاتهای انگلیسی را تولید می‌نماید. لذا هدایاتی این چهار روز برای قطع rpm شد. محتوای محیط کشت تولیدی با دور ۳۰۰۰۰ سانتریفوج شده و مایع ترویل آن جمع‌آوری گردید.

چ غربالگری فراوردها توسط تکنیک کشت سلولی
کشت سلول‌های توموری مدار (continuous) به عنوان یک سلول T لقوق موشی یوپ و از بانک سلول‌های استیتیپاسنتور ایران خریداری گردید. در یک گپ دو دهه اضافه رنگ دور ریخته شد و پلت به مدت ۲ ساعت در انکوباتور و درجه سانتی‌گراد حاوی ۵ درصد کاز Co۲+ قرار گرفت که پس از این مدت، تئوریز شد. سسل رشید با قطع

یافته‌ها

الف- محیط رشد
منحنی ۱ رشد مربوط به یک سوش استرپتومایس را نشان می‌دهد. آنتی‌توموری به عناوین بتاکلستر ناپاench KE Ra بالاست. به توجه به منحنی رشد، زمان فاز ناپاench KE Ra بالاست مشخص گردید. بنابراین در این این زمان انتی‌توموری را پیچیده نمودیم. پس از جامد شدن آگار، دیسک‌های کاغذی با قطر
نتیجه آزمایش آماده گردید، بدین صورت که سولولهای زنده رنگ را احیاء کرده و در نتیجه در تناها یافت، بلکه سولولهای وحشی در نتیجه در محل فرارگیری دیسک و تأثیر فراردها (در صورتی که فرارده سولول را از بین برده باشد) رنگ احیاء نشدند و به سولولهای مورد توانستنیانی احیاء رنگی ثابت نمودند. از مجموع 125 فرارده سولولی به 125 سولول استرپتومایس، در فرارده توانستنیانی انتخاب (هاله ابی) از این آزمایش اجای ضعف نمایند.

بحث

جهت تولید فرارده‌های تخمیری استرپتومایس‌ها در محیط تولیدی به مدت 5 روز انیکوهی شبدانه که استرپتومایس‌ها در این مدت وارد فاز ثابت رشد شده و متابولیتهای ثانویه مثل آنتی‌بیوتیک‌های ضد تومور و پاسیب تولید نمودند. وی (Wai) (18) و همکاران (2046) (S. arane) 2006 مدت 120 تا 144 ساعت در محیط تولید اینکوهی کردن و پس از انت تومور و سولولهای در منابع مناسبی از آنتی‌تومور (Maiese) و همکاران (19) دسترسی اوردن. ماتس (Maiese) زمان 64 ساعت را در نظر گرفتند. آنها نشان دادند که پس از 68 تا 72 ساعت، سولولهای انیکوهی به حداکثر رسیده و سپس ثابت بنا، مانند آنتی‌تومورها متابولیتهای ثانویه مسئول به فاز ثابت رشد تولید می‌شوند. با توجه به محدودیتهای زمانی فاز ثابت رشد (تقریبا از ساعت چهاردهم تا بعد) در منابع رشد استرپتومایس (منابع 1) و همچنین با توجه به زمان‌هایی که توسط بیهوشگران فوق الکتریکی که کار رفته، یک زمان انیکوهی به 5 روز را برای تولید فراردها نمودار 1: منحنی رشد پک سولول استرپتومایس

پ - کشت استرپتومایس در محیط محل و تولید فرارده در محیط 4-6 اسپرگل‌ها به گونه‌ای که فرارده سولول را از بین برده باشد رنگ احیاء نشدند. از تجمعات مشخصی در محل خود را نشان دادند. ضمناً گاهی در مراحل نهایی رشد پیگمانها نیز مشاهده می‌شود.

ج - غربالگری فرارده‌ها و توسط روش سنجش افتراقی (DADBCS) تنظیم شده در آگر (DL)

سولول E لامائش بر روی آن قرار گرفت و پس از 70 اساعت در انکوباتور قرار گرفت. در مدت زمان انیکوهی سولول به 38 توصیف بودن، مواد اینکوهی سولول فراردها در محیط محل و تولید می‌شود. پس از 15 ساعت، دیگر را از روش توصیف بردنشته و می‌باشد. رنگ که یک زمان انیکوهی به 5 روز سولول E لامائش بر روی آن قرار گرفت و پس از 15 ساعت، دیگر را از روش توصیف بردنشته و می‌باشد. رنگ که یک زمان انیکوهی به 5 روز سولول E لامائش بر روی آن قرار گرفت و پس از 15 ساعت، دیگر را از روش توصیف بردنشته و می‌باشد. رنگ که یک زمان انیکوهی به 5 روز سولول E لامائش بر روی آن قرار گرفت و پس از 15 ساعت، دیگر را از روش توصیف بردنشته و می‌باشد. رنگ که
فراورده ریکامیاپسین (rebeccamycin) نامیده شد و
فعالیت آن بر ضد تومورهای موشی ثابت گردید.
ماتسون و همکاران (20) در طی مطالعه‌ای دیگر
ماع تخمیری سوش C-49-OC9 را بر روی سلول
که مربوط به کلون موشی می‌باشد، احتمال
C26 کردن آن را ذکر کرده‌اند. این فعالیت
داله. فعالیت آنتی‌توموری این فراورده در
تومورهای موشی نیز نشان داده شده است. با توجه
به مطالعات فوق الذکر، اشکال است که این فعالیت
آنتی‌توموری در حیوان، رابطه‌ای بین نژادی وجود
دارد به طوری که از دیاروئی که بر روی
تومورهای آزمایشی حیوانات موردنظر بودند، در این
روش‌ها نیز پاسخ مثبت تولید گردیده است (9 و 12). با
اين وجود برای اينکه فعالیت آنتی‌توموری
فراورده‌های ساینتوتکسیک مطالعه ما در حیوان
اثبات گردید، بالا در این فراورده‌ها روی موشی-
های متیا به سرطان‌های استاندارد نیز آزمایش شوند.
به این نکته نیز پایان اشاره شود که هرچند در زمینه
شناسایی مواد ضد سرطان غایبی (دلیل پزشکان
تر) مورد نیست که به مطالعات بیزمنی
متعدد شناخته شود. لیکا همین مواد ساینتوتکسیک
و همکاران کشت سلول P388 را کنار
در این رابطه مورد استفاده قرار می‌گیرد. می‌توان
علت از سلول-4 استفاده نمودیم: بکی این که به
صوت سوسپنسیون رشد می‌کند که این ویژگی
لازم برای روش می‌باشد و در دیگر این که در
DADBCS مطالعات غیرگرگی سرطانی موشی کارایی و سپسی دارند و
نیز یک سلول موشی
است.

مناسب پندارشی که طی این مدت در فاز ناپیتح ردیده
آنتی‌تومور را می‌توان در نظر گرفت و به این ترتیب تشریح
می‌شود.

در این تحقیق، فراورده‌های تولیدی از محیط مایع
برون سلول باکتری جمع‌آوری گردیده. ماتسون و
همکاران (19)، ماتسون و همکاران (20)
و بسیاری از محققین دیگر نیز فراورده‌های تولیدی
خود را از مایع تخمیری بریون سلولی منتشر شده در
بین میسیولوگی‌ها بیشتر اوردند (17 و 21). این گونه
عملکرد به کشور دیلی است که به طور کلی بیشتر
مانند‌های ثانویه به خارج از سلول می‌گرایند.
تولید کندن ترشح می‌شود و تعداد کمی از آنها
در سلول بالای می‌مانند. این امر به ویژه در مورد
آنتی‌بایتیک‌ها و مواد ساینتوتکسیک صادق است;
زیرا بالا مانند این مواد درون باکتری می‌مکن است
برای خود آن باکتری ضرر باشد (32). دیلی باز
در این عارضه نشان داده‌های خارج سلول بودن 
فراورده‌های است، نشان آن‌هاست چرا که این گونه
مواد بالی در جهت رقابت بکار رود.

در گربالگی غیر استَن دیلی، DADBCS از ساینتوتکسیک روزی سلول‌های سرطانی نشان
دادند. به طور کلی سیستم غیرگرگی با استفاده از
کشت سلول‌های سرطانی، یک سیستم معتبر برای
شنایخت ضد سرطان‌ها به شمار می‌آید. این زیستی
و همکاران کشت سلول P388 را کنار
در غیرالگی توسط روش
DADBCS از ساینتوتکسیک روزی سلول‌های سرطانی نشان
دادند. به طور کلی سیستم غیرگرگی با استفاده از
کشت سلول‌های سرطانی، یک سیستم معتبر برای
شنایخت ضد سرطان‌ها به شمار می‌آید. این زیستی
و همکاران کشت سلول P388 را کنار
بردن و مماد مانند این سلول‌ها را توسط آنتی-
تومور استرپتودیون مخصوص کردن (72). امروزه
استرپتودیون مخصوص به عنوان یک آنتی‌تومور قوی دیده شده است. مماد مانند این سلول
کشت سلول KB توسط مایع
تخمیری سوش ۳۸۳-۳C-گزارش می‌کند که بوس
و همکاران منتشر کردن (10) که بعداً این

استرپتودیون، در فراورده‌های تولیدی پاسخ مثبت تولید
از مجموع ۱۲۵ فراورده مربوط به
ساینتوتکسیک، در فراورده‌های تولیدی پاسخ مثبت تولید
사를 ۱۳۸۷همراه با ۲۷ گزینه ۱۱۳ طب جنوب
References:

20. Matson JA, Bush JA. Sandramycin, a

