بررسی تأثیر مراجعه با صدا و موتونکسیدکرین بر ظرفیت آنتی-اکسیدانی پلاسما و میزان گلوتاتیون خون خرگوش

مسعود ملکی‌کاشانی، سید باقر مرتضوی، علی خواجه‌نهادی، عبدالامیر علاء‌اله، رمضان میرزایی، مهدی اکبری

چکیده
زمینه: افت شنوایی ناشی از صدا به عنوان یکی از ده بیماری مهم ناشی از کار در جهان شناخته شده است و موتونکسیدکرین موجب تقویت این ضایعه می‌شود. مطالعات نشان داده‌اند که این انسان‌ها در ابتلا به این بیماری حیاتی بوده است. این پژوهش با هدف بررسی تأثیر مراجعه با صدا، موتونکسیدکرین و تیمی توانم با این دو عامل بر ظرفیت کلی انتی-اکسیدانی پلاسما و میزان گلوتاتیون این حیات خون در مدل حیاتی انجام شد.

مواد و روش‌ها: مطالعه به روش تجربی بر روی ۲۲۴ خرگوش مورد نظر باعث کار در صدا و موتونکسیدکرین گردید. در کلیه گروه‌ها برای این انسان‌ها بیماری انتی-اکسیدانی پلاسما و میزان گلوتاتیون این حیات خون همچنین نشان داد. امکان تغییر در فرموله و پس از مراجعه با عوارض زیان‌آور تغییر گردد و نتایج با استفاده از روش‌های آماری تجزیه و تحلیل شد.

یافته‌ها: نتایج بررسی انسان انتی-اکسیدانی پلاسما و میزان گلوتاتیون این خون پس از مراجعه با صدا و موتونکسیدکرین بهترین تبстоя برای چهارم و سه‌بلندچه می‌باشد. میزان گلوتاتیون این خون در مورد موتونکسیدکرین بهترین تبстоя برای چهارم و سه‌بلندچه می‌باشد.

تکمیل کرده: در مورد محرمان ما و پرمکسیدکرین کاهش ظرفیت کلی آنتی-اکسیدانی پلاسما و گلوتاتیون احیاء در خون مشاهده می‌شود.

پیامدها: برای انتخاب بهترین نشان‌دهنده می‌باشد. باعث عدم تشخیص دمای خون در این کاهش بیشتر از موتونکسیدکرین است. میزان گلوتاتیون این خون در مورد موتونکسیدکرین بهترین تبстоя برای چهارم و سه‌بلندچه می‌باشد.

دریافت مقاله: ۱۳۸۷/۰۵/۱۵

نهم: تفاوت برجسته جلال آل‌احمد و شهید چهدران دانشگاه تربیت مدرس، دانشگاه پزشکی، گروه بهداشت حرفه‌ای

Email: sbmortazav@modares.ac.ir
مقدمه

صدای یکی از مهم‌ترین عوامل زیان‌آور فیزیکی در محیط کار است. حداقل سی میلیون نفر در آمریکا در معرض شرایط خطرناک و بیش از حد مجاز قرار دارند (1). همچنین برآورد می‌گردد که بیش از نشستن میلیون نفر در جهان بصاحب بیش از 85 درصد تعادل کار خود مواجه هستند (2).

مهم‌ترین آسباب ناشی از صدا، افت شنوایی است. افت شنوایی ناشی از صدا بعد از پیرگویی شایع‌ترین علت افت شنوایی در برخی کلان‌های است. این ضایعه به‌عنوان یکی از ده بیماری مهم ناشی از کار در جهان شناخته شده و در بیماری‌اندیه آن در سال نیزار میلادی برابر با 4 میلیون سال عمر سالم تلف شده برآورد گردیده است (3).

افت شنوایی ناشی از صدا یک پدیده چند علت است که در آن علل‌های مکانیکی ناشی از صدا، آسیب‌های متاپولیکی نیز در ایجاد عارضه نقش مهمی ایفا می‌کند که مهم‌ترین آنها استرس اکسیدانیو ناشی از تشکیل رادیکال‌های آزاد (گونه‌های فعال اکسیژن) در حمایت گوش می‌باشدند (4).

در مطالعه یاماکوسا (Yamasooba) و همکاران نشان دادند که این روش‌های خود که به صدا موجه کاهش گلوتاتیون ایجاد در سلول‌های مبطای خارجی در حمایت گوش می‌گردد (5). افزایش رادیکال‌های آزاد نیز در اثر مواجهه با صدا زیاد در مسح سریالی برخی از مطالعات گزارش شده است (6 و 7). مطالعات فیزیولوژی و همکاران نیز کاهش ظرفیت آتیکسیدان‌ها در خون را عامل غالب برای ایجاد افت شنوایی ناشی از صدا معرفی نموده است (8).

با روشن شدن فرآیندهای ایجاد افت شنوایی ناشی از صدا، پژوهش‌های گسترده‌ای در خصوص اسفاده‌ای
Reverberant field

مصدر موجه هم‌مان صدا و مونوکسیدکرین

می‌شوند هنوز به درستی روش نشده است. برخی از مطالعات این تقییات را به افزایش استرس اکسیدانی ناشی از مواجهه هم‌مان صدا با مونوکسیدکرین نسبت می‌دهند. در مطالعه فیشر و همکاران مشخص شد که سطح رادیکال‌های آزاد افزایش در حوزه گوش حیوانات مورد مطالعه‌ای که در م FormGroup با صدا و مونوکسیدکرین بودند بیشتر از میزان آنها در حیوانات است که نه تنها در معرض صدا قرار داشته‌اند (22). در عین حال اندازه‌گیری‌های آزاد در حوزه‌ای گوش به‌وسیله دوگوش شده است (23).

صدایی در فرکانس 1 تا 4 کیلوهertz بعنوان اصطلاح خطاطی در محیط کار محسوب می‌شود (24). تماس شغلی با این اصوات تأثیر گذاری جانوری به مونوکسیدکرین توان بخش، خطر افت شنوایی را افزایش می‌دهد. بنابراین بررسی تأثیر اصوات با فرکانس 1 تا 2 کیلوهertz و میزان آن با مونوکسیدکرین بر طرفیت آنتی‌اکسیدانی خون و میزان گلوتاتیون حالت اهمیت بوده و می‌تواند فرضیه‌های جدیدی در خصوص نکاتگیری آنتی‌اکسیدان‌ها جهت پیشگیری از این عوارض مطرح نماید. به‌همین منظور با توجه به محدودیت‌های مطالعه بر روی انسان، این پژوهش با هدف بررسی تأثیر مواجهه با صدا و مونوکسیدکرین بر طرفیت آنتی‌اکسیدانی پلاسمای میزان گلوتاتیون خون تأثیر می‌گذارد.

خروجیش انجام گرفت.

طرح انتقال مواجهه

برای مواجهه حیوانات با عوامل زیان‌آور بر یک انتقال از جنس طلق پلی کربنات به ابعاد 90×90×5 سانتی‌متر طراحی و ساخته شد. انتخاب جنس و ابعاد انتقال با توجه به ایجاد شرایط پرتوی 1 در داخل آن صورت گرفت. به‌طوری که میزان صدا در داخل انتقال مستقل از فواصل باشد و در مجموع انتقال در معرض صدا یکسان قرار داشته باشد. حیوانات در هر گروه عضوی

جدال‌ها جهت مواجهه با صدا و مونوکسیدکرین در داخل انتقال قرار گرفتند.

1 Reverberant field

مواد و روش کار

این پژوهش به روش تجربی در مدل حیوانی، بر روی 24 سر خرگوش‌های نر سفید باغ سه‌ماهه، از نژاد بی‌پرچمی با محدوده وژنی 200-250 گرم در آزمایشگاه بهداشت

Downloaded from isi.isirb.pums.ac.ir at 7:06 +0430 on Sunday July 7th 2019
ماهیچه حیوانات با صدا

حیوانات در گروه‌های مورد نظر (گروه ۲ و ۳) در معرض صدا با پهنه‌ای بادن ۷۵۰۰ هرتز، ترکیب حساسیت‌سنجی آکوستیک با مکانیکی ۱۰۰۰۰ تا ۲۰۰۰۰ هرتز، و با تراز صدا معادل ۱۰۰۰ دسی‌بل به مدت ۸ ساعت در روز و به میزان ۵ روز پایان قرار گرفتند. زمان کل مواجهه با صدا ۴۰ ساعت بوده است. با استفاده از آزمایشات سیگنال، صدا به ترکیب فرانکسا مواد نظیر تولید و از طریق ترمافاز، بر روی کامپیوتر اجرا شده. صدای تولید شده از طریق یک آمبیل فایر و بلندگو در داخل اتاق مواجهه پخش گردید. پایش میزان شدت و فرانکسا صدا در داخل اتاق به میزان دستگاه صدای آنالیزوراد مدل MRU ساخت شورک ایکوستیک انجام گرفت. Cel-۴۹۰ میکروفون دستگاه صدای تولید داخل اتاق قرار گرفته و میزان صدا در طول مدت مواجهه بصورت مربی یا بدون تراز نیاز از طریق ترمافاز مربوطه و برای گردید.

عکس نوریت فرآوری کل آنتی اکسیدان پلاسمای خون حیوانات با

FRAP

استفاده از روش ۵ Ferric Reducing Ability of Plasma

روش ترمافاز FRAP که در سال ۱۹۹۵ توسط (Benzie و بنی) استرین (Strain) معرفی شد، یک روش حساس است که در آن ظرفیت کل آنتی اکسیدان پلاسمای خون از طریق تعیین توانایی پاسخ به ترکیب فرانکسا ۳ آبی‌شیرین تری‌تهار برمی‌گردد (Fe ۲+ تا TPTZ به فرم فرو) + (Fe ۳+) در محیط اسیدی به رنگ آبی است و حداکثر جذب نوری آن در طول موج ۴۵۰ نانومتر قابل اندازه‌گیری می‌باشد (۷۵). در این پژوهش ابتدا محول فرآوری که شامل محول تری‌راهی‌دار، کاتالاز و بارف استات می‌باشد، محول حاوی ترکیب کار استاندارد جذب آنها با shindazu-uv3100 استفاده از دستگاه استاندارد T رهبر مدل Air Flow مدل به‌صورت دینامیک انجام شد. بی‌تهویه اتاق ۵۵ لیتر بر دقیقه بود که برای تعویض هواي اتاق به میزان ۱۲ باز در ساعت کافی می‌باشد. جهت همگین‌سازی مواد استاندارد به هوا در گزارش قبل از ورود به اتاق در یک ظرف شیشه‌ای وارد شده و با هوا مخلوط می‌گردید. همچنین از یک هواشک در سقف
آزمون کولموگروف اسمیرنوف استفاده گردید. سپس برای مقایسه داده‌ها قبل و بعد از مواجهه در هر گروه از آزمون 1 روشی استفاده شد. همچنین برای مقایسه گروه‌ها با یکدیگر از آزمون آناپاریامان و تی از آزمون تکیک یکدیگر دوگانه در داده‌های طبیعی استفاده شد.

سطح معنی‌دار در کل آزمون‌ها 5 درصد لحاظ گردید.

یافته‌ها

توزیع داده‌ها در هر گروه‌های مورد مطالعه طبیعی بود. جدول 1 شاخص‌های آماری برآورد (FRAP) آنتی اکسسیدانی پلاسمای خون حیوانات (GSH) در حسب میکرومول لیتر را قبل و پس از مواجهه با عوامل زیانآور نشان می‌دهد. مقایسه میانگین برآورد آنتی اکسسیدانی پلاسمای خون حیوانات قبل از هرگونه مواجهه با عوامل زیانآور در چهار گروه مورد مطالعه اختلاف معنی‌دار بیان این مقادیر را نشان نمی‌دهد (P>0.997). به عبارت دیگر مقایسه برآورد آنتی اکسسیدانی پلاسمای خون حیوانات در تمام گروه‌های مورد مطالعه قبل از مواجهه با عوامل زیانآور با یکدیگر یکسان بوده است. آزمون t زوجی انجام شده در هر گروه مشخص کرد که به جز گروه 1 در سایر گروه‌ها ظرفیت آنتی اکسسیدانی پلاسمای پس از مواجهه با عوامل زیانآور در نسبت به قبل از مواجهه کاهش یافته است (P<0.001)

در نمونه 1 میزان کاهش برآورد آنتی اکسسیدانی پلاسمای خون پس از مواجهه با عوامل زیانآور در نسبت به قبل از مواجهه با این عوامل در چهار گروه مورد مطالعه با یکدیگر مقایسه شده است.

نتایج این مقایسه میان می‌دهد که کاهش ظرفیت

اندازه‌گیری گلوتاتیون احیا (GSH) در خون تام

این اندوزه‌گیری با روش بولتر و با استفاده از معرف عمان (5-7-5-2- دی‌تی‌پی‌سی- دی‌تی‌ای‌ژن‌کازیا) انجام گرفت. (76) این اندوزه‌گیری با استفاده از مخلوط‌ها استاندارد گلوتاتیون و معرف عمان، جلب نمونه‌های استاندارد در طول منحنی و 142 نمونه توسط دستگاه آسیکتروفومتر قرار داده شدند. استاندارد رسم شد. سپس میلی لیتر از خون تام حیوان پس از خون‌گیری مستقیم از قلب مطابق با شرایط استاندارد آماده و پس از مخلوط نمونه با معرف طبق دستورالعمل، جلب آن توسط دستگاه آسیکتروفومتر قرار داده شدند و نمونه گلوتاتیون احیا خون تام با استفاده از منحنی استاندارد تعیین شد. این آزمایش برای تمام گروه‌های مورد مطالعه قبل و پس از آخرین مواجهه انجام شد.

لازم به ذکر است که قبل از خون‌گیری از قلب جهت آزمایشات فوق، حیوانات به‌طور گروه‌بندی برای این منظور از مخلوط کامیاب 10 درصد و گلیازین 2 درصد استفاده شد. مخلوط از 60 درصد کامیاب و 40 درصد گلیازین تهیه و 100 میلی لیتر به ازای هر کیلوگرم وزن خرکش از طریق زیرچلیدی در ناحیه ران تزریق شد.

روش‌های آماری

پس از انجام آزمایش‌ها ابتدا جهت تعیین بهبودی آنها از

6 Kolmogrov-Smirnov Test
7 Analysis of variance
8 Tukey Test
4 Glutathione sulfhydryl
5 Ellman
جدول 1: شاخص آماری طرفیت کلی آتی اکسیدانی پلاسمای خون بر حسب میکرومو پلیتر (FRAP) قبل و پس از مواجهه با عوامل زیان‌آور در گروه‌های خرگوش مورد مطالعه

<table>
<thead>
<tr>
<th>گروه‌های آماری</th>
<th>شاخص‌های آماری</th>
<th>پیک سابع پس از آخرین مواجهه</th>
<th>قبل از مواجهه</th>
</tr>
</thead>
<tbody>
<tr>
<td>گروه 1</td>
<td>میانگین = انحراف معیار</td>
<td>976/3 ± 29/3</td>
<td>976/3 ± 29/3</td>
</tr>
<tr>
<td>گروه 2</td>
<td>میانگین = انحراف معیار</td>
<td>999/8 ± 45/5</td>
<td>999/8 ± 45/5</td>
</tr>
<tr>
<td>گروه 3</td>
<td>میانگین = انحراف معیار</td>
<td>976/1 ± 23/1</td>
<td>976/1 ± 23/1</td>
</tr>
<tr>
<td>گروه 4</td>
<td>میانگین = انحراف معیار</td>
<td>969/8 ± 34/8</td>
<td>969/8 ± 34/8</td>
</tr>
<tr>
<td>گروه 5</td>
<td>میانگین = انحراف معیار</td>
<td>911/3 ± 51/8</td>
<td>911/3 ± 51/8</td>
</tr>
</tbody>
</table>

از مواجهه با عوامل زیان‌آور را نشان می‌دهد.

مقایسه میانگین غلظت گلوتاتیون احیای خون مورد مطالعه از عوامل زیان‌آور در چهار گروه مورد مطالعه اختلاف معنی‌داری میان پیمان‌های متفاوت را نشان می‌دهد.

جدول 2: احیای خون در غشاء گلوئول‌های قمر در پس از مواجهه با عوامل زیان‌آور در گروه‌های خرگوش مورد مطالعه

نمودار 1: مقایسه در نتایج آزمون‌ها و آزمون‌های پلاسمای خون در پس از مواجهه با عوامل زیان‌آور نسبت به قبل از مواجهه با این عوامل در گروه‌های خرگوش مورد مطالعه
مطالعه کاشانی و همکاران

جدول ۲ شاخص‌های آماری میزان گلوتاتیون احیاء خون در گروه‌های گرخوش مورد مطالعه RBCs قبل و پس از مواجهه با عوامل زیان‌آور در گروه‌های گرخوش مورد مطالعه

<table>
<thead>
<tr>
<th>شاخص‌های آماری</th>
<th>قبل از مواجهه</th>
<th>پس از مواجهه</th>
</tr>
</thead>
<tbody>
<tr>
<td>گروه‌های گرخوش</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه ۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه ۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه ۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه ۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه‌های باند</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بدون مواجهه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مواجهه با صدا</td>
<td></td>
<td></td>
</tr>
<tr>
<td>دردسردکردن</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بحث

پژوهش حاضر نشان داد مواجهه ویروسهای با صدا در فرکانس‌های ۱ تا ۴ کیلوهERT موجب افزایش استرس اکسیداتیو و مصرف آنتی اکسیدان‌های خون می‌گردد. مطالعات قبل در خصوص تاثیر صدا در فرکانس‌های مختلف بر اکسیداتیو تیز همین را نشان دادند. بنابراین می‌توان افت شناوی ناشی از صدا در این محیط فرکانسی را به افزایش استرس اکسیداتیو نسبت داد. این بناهای می‌تواند فرضیه بکارگیری آنتی اکسیدان‌ها در پیشگیری از افت شناوی

نمودار ۲ مقایسه میزان کاهش غلظت گلوتاتیون احیاء خون گروه‌های گرخوش پس از مواجهه با عوامل زیان‌آور نسبت به قبل از مواجهه با این عوامل در گروه‌های گرخوش مورد مطالعه.
و همکاران نیز نشان داده شد که مواجه تناشی از صدا در میخی‌های کاری را مطرح نماید و توصیه می‌شود مطلاعات بیشتری در این خصوص انجام گیرد. صدا بعنوان یک عامل تحریک‌کننده استرس اسکیدانتیو خارجی موجب اخلاق در هم‌مرت تکمیل و در نتیجه عدم تعادل یون کلریسم در میونکردری می‌شوید. این امر موجب آزاد شدن گونه‌های عفای اکسیژن به صورت رادیکال‌های آزاد می‌گردد. افزایش سطح رادیکال‌های آزاد در بدن منجر به مصرف انتی اسکیدانتیا هسته و در نتیجه ظرفیت آنتی اسکیدانتیا خون کاهش می‌یابد.

مطابق با پایه‌های پژوهش مواجه نه تناشی از صدا در میخی‌های کاری را مطرح نماید و توصیه می‌شود مطلاعات بیشتری در این خصوص انجام گیرد. صدا بعنوان یک عامل تحریک‌کننده استرس اسکیدانتیو خارجی موجب اخلاق در هم‌مرت تکمیل و در نتیجه عدم تعادل یون کلریسم در میونکردری می‌شوید. این امر موجب آزاد شدن گونه‌های عفای اکسیژن به صورت رادیکال‌های آزاد می‌گردد. افزایش سطح رادیکال‌های آزاد در بدن منجر به مصرف انتی اسکیدانتیا هسته و در نتیجه ظرفیت آنتی اسکیدانتیا خون کاهش می‌یابد.

مطابق با پایه‌های پژوهش مواجه نه تناشی از صدا در میخی‌های کاری را مطرح نماید و توصیه می‌شود مطلاعات بیشتری در این خصوص انجام گیرد. صدا بعنوان یک عامل تحریک‌کننده استرس اسکیدانتیو خارجی موجب اخلاق در هم‌مرت تکمیل و در نتیجه عدم تعادل یون کلریسم در میونکردری می‌شوید. این امر موجب آزاد شدن گونه‌های عفای اکسیژن به صورت رادیکال‌های آزاد می‌گردد. افزایش سطح رادیکال‌های آزاد در بدن منجر به مصرف انتی اسکیدانتیا هسته و در نتیجه ظرفیت آنتی اسکیدانتیا خون کاهش می‌یابد.
مورد اشاره‌ای از صدای اکتا 4، باند با مولکول
کیلوزئتر استفاده شده است و در پژوهش حاضر
حیوانات در معرض صداهای با فرکانس پایین تر قرار
گرفته‌اند. می‌توان پیشینه نمود که فرکانس صدای
مورد موافقت در افزایش استرس اکسیداتیون ناشی از
تماس توانم با صدا و مولکول‌های مولکولی می‌باشد. در
مطالعات قبلی نیز نشان داده شده است که اثر
تقویت کندگی مولکول‌های بر فرکانس صدا و
صدای صدا در موضع با صداهای با فرکانس بیالا به مراتب
بیشتر از صداهای با فرکانس پایین است (17 و
18). به‌عبارت دیگر این پیشنهاد مطرح می‌شود که
مولکول‌های می‌تواند در موضعی توانم با صداهای
با فرکانس بیالا به موضع استرس اکسیداتیون و
در نتیجه تقییت افت شنوایی ناشی از صدا گردد که
مطالعات بیشتر در این راه خوشه توصیه می‌گردد.
بررسی میزان گلوله‌های احیاء غشاء گلوله‌های قرمز
خون در حیوانات مورد مطالعه نشان داد که موضع
با صدا و موضعی توانم با صدا و مولکول‌های می‌تواند
موجب کاهش شده قرمز‌های احیاء بیشتریکه شاهد
گلوله‌های احیاء غشاء گلوله‌های قرمز احیاء کننده
ولی موضعی توانم این آلاینها و شده میزان گلوله‌های
احیاء را کاهش ده (28) که نتایج این مطالعه با پژوهش
حاضر مطابقت دارد. پژوهش اخیر همچنین نشان داد
تماس توانم با صدا و مولکول‌های می‌تواند کاهش
بیشتری در میزان گلوله‌های احیاء نسبت به موضعی
نها با صدا احیاء کننده که این مورد با پایه‌های دیگر
FRAP مشابه‌تر دارد. پژوهش در بررسی
به‌طور کلی مطالعه با پایه‌های این پژوهش، موضعی
با عوامل زیان‌آور محظی از قبیل صدا و
مولکول‌های می‌تواند به‌طور عمومی موجب
می‌شود، نشان دهنده نشان می‌باشد که
یکی از مورد با پایه‌های دیگر این
FRAP مشابه‌تر دارد. پژوهش در بررسی
به‌طور کلی مطالعه با پایه‌های این پژوهش، موضعی
با عوامل زیان‌آور محظی از قبیل صدا و
مولکول‌های می‌تواند به‌طور عمومی موجب
می‌شود، نشان دهنده نشان می‌باشد که
یکی از مورد با پایه‌های دیگر این
References:


