بررسی تأثیر خوراکی رزغنیه (Pistacia atlantica) بر سطح سرمی هورمونهای تیروئیدی و لپئین در موش‌های صحرایی ماده مبتلا به پرکاری تجریبی تیروئید 

سید نظری ۱، مهدی صائب، سلمان پورگنابادی، سعید صائب، مریم انصاری لاری۲

۱ گروه علوم درمانگاهی، دانشگاه دامپزشکی، دانشگاه شیراز
۲ گروه علوم پایه، دانشگاه دامپزشکی، دانشگاه شیراز
۳ گروه بیوشیمی، دانشگاه پزشکی کرمان
۴ گروه بیوشیمی دانشگاه دامپزشکی، دانشگاه شیراز

چکیده
زمینه: مصرف چربی‌های خیاری‌ساز و همچنین روزگار به سبب کاهش سطح سرمی لپئین می‌باشد. با توجه به نقش محرک سرمی لپئین و هورمون‌های تیروئیدی در تأمین مصرف خوراکی فارس، از اثر خوراکی رزغنیه بر سطح سرمی لپئین و ارتباط آن با هورمون‌های تیروئیدی در پرکاری تجریبی در موش صحرا‌ای ماده مورد انسکرای دوازده‌می‌باشد.

مواد و روش‌ها: تعداد ۳۰ موش صحرایی ماده بالغ انتخاب و به مدت یک هفته تحت رژیم غذایی معمول قرار گرفتند. سپس بر طور تصادفی به گروه‌های ۴ تایی تقسیم شدند. گروه اول به‌عنوان کنترل (۱) طیبی در طول دوره مطالعه فاقد رژیم غذایی معمول و آب معمول دریافت نمودند. گروه دوم به‌عنوان کنترل (۲) رژیم غذایی معمول به‌نوبه تجویز ۱۲ میلی‌گرم لوتیوریکسین، سوم به‌عنوان کنترل (۳) رژیم غذایی معمول به‌نوبه تجویز ۱۲ میلی‌گرم لوتیوریکسین، چهارم به‌عنوان کنترل (۴) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۵) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، ششم به‌عنوان کنترل (۶) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، چهارم به‌عنوان کنترل (۷) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۸) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، ششم به‌عنوان کنترل (۹) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۰) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۱) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۲) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۳) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۴) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۵) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۶) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۷) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۸) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۱۹) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۲۰) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۲۱) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۲۲) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۲۳) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین، پنجم به‌عنوان کنترل (۲۴) رژیم غذایی معمول به‌نوبه تجویز ۲۰ میلی‌گرم لوتیوریکسین

نتیجه‌گیری: این تحقیق نشان می‌دهد که مصرف رزغنیه می‌تواند از طریق ارتباطی که در تنظیم پرکاری تجریبی تیروئید نقش داشته باشد.

از از کلیدی: رزغنیه، لپئین، پرکاری تجریبی، هورمون‌های تیروئیدی، موش صحرا‌ای ماده

دریافت مقاله: ۱۳۹۸/۱۰/۲۹ - پذیرش مقاله: ۱۳۹۸/۱۰/۲۹

E-mail:nazifi@shirazu.ac.ir
مقدمه

در مورد تأثیرات منفی لیپین و هورمون‌های تیروئیدی گزارش‌های وحشی دارد. در عین حال، عدم تفاهم هایی در مورد ارتباط سطح سرمی لیپین و هورمون‌های تیروئیدی در پژوهش‌های محققین مختلف دیده شده است (5-1).

اثرات کم‌کاری و پرکاری تیروئید در توانایی لیپین

برای تنظیم ترشح هورمون محرک تیروئید (TSH) برسی شده است. در سه سال از دریافت لیپین در موس های که پرکاری تیروئید داشته اند سطح حدود 1/2 برابر شده است. در موس هایی که کم‌کاری تیروئید داشته اند لیپین اثر توانایی است.

در سوء تغذیه تولید لیپین کاهش یافته و فعالیت

تیروئید هم کاهش می یابد (1). در موس هایی که تغذیه طبیعی داشته اند با تریک دوزه‌ای پاپین و RA افزایش دهند مکرر لیپین توانسته‌ای ترشح TSH را افزایش دهد (6). از طرفی در موس هایی که با جریان غذایی غنی از استدیدهای چرب غیرشایع چندگانه

(Poly Unsaturated Fatty Acid =n-3-PUFA)

تغذیه شده بودند، میزان لیپین کاهش یافته (7). در بررسی های دیگری که جریان غذایی غنی از استدیدهای چرب غیرشایع یکانه

(Mono Unsaturated Fatty Acid=MUFA)

و ألفاولیтопین اسید با جریان غذایی غنی از استدیدهای چرب اشباع با هم مقایسه شده، اثر اسیدهای

چرب غیرشایع به عنوان فاکتور کاهش دهنده سطح

پلاسمازی لیپین تأیید شده است (8).

مواد و روش کار

جزیات مورد آماده و ایجاد پرکاری تیروئید

تعداد 30 موس صحرایی ماده بالغ سفید نیوز اسپرای-دولی با میانگین وزن 400 گرم انتخاب گردید و جهت ارائه و قبولیتی به مدت یک هفته تحت رژیم غذایی معمول قرار گرفتند. سپس

۱۷۹۰ سم: چهاردهم‌شماره ۱/بهار
به طور تصادفی به 5 گروه 6 قطعه آزمایشگری توزیع شدند. گروه اول به عنوان کنترل (1) طبیعی در طول دوره مطالعه فقط رژیم غذایی معمولی و آب معمولی دریافت نمودند. گروه دوم به عنوان کنترل (2) رژیم غذایی معمولی به اضافه تجویز 12 میلی گرم لوتیروکسین در این بستر آب را به‌مدت یک ماه دریافت نمودند. برای این گروه در خوانیات با دور 10 میلی گرم در لیتر لوتیروکسین سیمگا در آب خوراکی حیوانات ایجاد گردید. گروه‌های سه، چهار و پنج همراه با تجویز دور مورد نظر لوتیروکسین، به ترتیب میزان 5 درصد، 10 درصد و 20 درصد رژیم غذایی معمولی به جهت گذاره در چهاردنده دریافت کردند. این مطالعه نشان می‌دهد که درصد‌های مورد نظر از رژیم غذایی (بررسی‌گر گرم روزی درصد گرم غذای معمولی) با غذای معمولی به‌طور کاملاً مخلوط گردید و از هر پاییز حیوان برای تغذیه حیوانات درآمد.

در مناطق اطراف شهر از دو درخت چندین شد و یک
از جمع آوری به دانشکده دانشگاه شیراز
منتقل گردید. به (شماره هربرایوم 1017671) پس از
تعمیر کردن و درست کردن مورد نظر برای فاکتورهای
مزیب گردید در 15 و 20 اندام‌گیری به‌ترتیب
47/46. 47/45/46 و 47/45 می‌باشد.

لیپین با روش الیزه ساندویچی مورد اندازه‌گیری
قرار گرفت. برای سنجد لیپین از کیت بیوتوندر
Biovendor Laboratory (Medicine, Inc.Czech Republic
Stat) گردید. از دستگاه از ریز سخت امریکا
(7420) در طول موج
(Awareness Fax 2100 نانومتر جهت جدید نوری استفاده گردید.

روش آنالیز اماری

برای تجزیه و تحلیل آماری نتایج به دست آمده از ترم افزار کامپیوتری SAS نسبت‌های 8 استفاده شد.

امکانات آماری میان گروه‌های مختلف و زمان‌های مختلف خون‌گیری با استفاده از آنالیز واریانس یک‌طرحه و آنالیز واریانس با اندازه‌گیری‌های مکرر (Repeated Measurements ANOVA) گردید. در مواردی که اختلاف آماری گروه‌ها و زمان‌های مختلف معنی دار بود از آزمون دانکن برای پی‌بردن به اختلاف بین مبانگین استفاده شد. در بررسی آماری، سطح معنی‌دار دار (P<0/05) در نظر گرفته شد و داده‌ها به دو بخش نتایج پی‌سورد میانگین ± خطای معیار محاسبه و مقایسه گردیدند.

جدول 1 مقایسه میزان (میانگین±انحراف معیار) هورمون‌های تیروئیدی و لیپین سرم در زمان‌های مختلف خون‌گیری در موس صحرایی

| لیپین | T3 (ng/l) | T4 (ng/l) | T3 (nmol/l) | T4 (nmol/l) | پارامتر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان خون‌گیری</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه 50 کتل تعفیف با رژیم</td>
<td>0/115±5/05</td>
<td>9/156±7/53</td>
<td>0/58±4/33</td>
<td>0/85±4/33</td>
<td></td>
</tr>
<tr>
<td>مجموعی</td>
<td>0/195±0/77</td>
<td>9/45±0/77</td>
<td>0/99±0/77</td>
<td>0/99±0/77</td>
<td></td>
</tr>
<tr>
<td>رژیم معمولی</td>
<td>0/150±0/77</td>
<td>9/45±0/77</td>
<td>0/99±0/77</td>
<td>0/99±0/77</td>
<td></td>
</tr>
<tr>
<td>رژیم مولکولار</td>
<td>0/195±0/77</td>
<td>9/45±0/77</td>
<td>0/99±0/77</td>
<td>0/99±0/77</td>
<td></td>
</tr>
<tr>
<td>رژیم میانگین</td>
<td>0/195±0/77</td>
<td>9/45±0/77</td>
<td>0/99±0/77</td>
<td>0/99±0/77</td>
<td></td>
</tr>
<tr>
<td>رژیم میانگین</td>
<td>0/195±0/77</td>
<td>9/45±0/77</td>
<td>0/99±0/77</td>
<td>0/99±0/77</td>
<td></td>
</tr>
</tbody>
</table>
هوشمندانی به بر می‌رود ترندی 2 \( \gamma \) در هوشمندانی که از رضایت غذایی در پنج درصد رغیسی پسته \\( \gamma \) و هرکولین \\( \gamma \) تفاوت‌ها امکان داری را در روش‌های مختلف آزمایش دادند (50\% \((P=0.50)\). اما بررسی غلظت لیپین \\( \gamma \) سرم در طول دوره آزمایش (از روز صفر تا 30 آزمایش) روئینی کاهشی داشت و به روش معنی‌داری کاهش یافته بود (جدول 1). در هوشمندانی صحرایی گروه رژیم 10 درصد در سرم و هرکولین \\( \gamma \) روئینی تفاوت‌ها و لیپین تفاوت‌های آماری معنی‌داری را در روزهای مختلف آزمایش دادند (50\% \((P=0.50)\). غلظت ترندی \\( \gamma \) سرم در طول دوره آزمایش به معنی داری افزایش و غلظت لیپین سرم به طور معنی‌داری کاهش یافته بود (جدول 1). در هوشمندانی صحرایی گروه رژیم 20 درصد روغیسی پسته و هرکولین، ترندی و لیپین تفاوت‌های آماری معنی‌داری را در روزهای مختلف آزمایش نشان دادند (50\% \((P=0.50)\). غلظت ترندی \\( \gamma \) سرم از روز صفر به بیست روئینی افزایش و پس از آن کاهش داشت و غلظت لیپین سرم به‌طور معنی‌داری کاهش یافت (جدول 1).}

بحث

استفاده از روغیسی در هوشمندانی صحرایی با پرکاری ترندی سبب شد تا روئینی / لیپینی معنی‌داری که پس از انجام همبستگی بین در غلظت ترندی \\( \gamma \), ترندی \\( \gamma \), سرم مشاهده شده بود کننده شود. به‌طوری که \\( \gamma \) با افزایش درصد روغیسی به تغییرات افزایشی هوئه منی ترندی نیز رو به کاهش گذاشت. در
به وسیله هورمون‌های تهیه‌نی‌کننده اشکاره کردن و بیان می‌تواند باعث ایجاد التهاب در پوشه‌های خوننگی به منظور حفظ حرارت و درمان بهبود در اثر دفع میکروب‌ها، که در گل‌ها و سبک‌های سطحی انسولین و گل‌کرک فوق‌العاده سرخ می‌باشد (فمیت (20) و گل‌کرک تولید از سلول‌های خلوت کننده در سطح مناسب به همکاران مشاهده می‌شود که جوزیه چرخ‌های غذایی حاوی اسیدهای چرب غیراشباع 3 و 6-4 نیز می‌تواند در میان هپاتوکینون‌ها و سلول‌های خلوت در بیوسیستم مناسب به میکروب‌ها و سبک‌های سطحی انسولین و گل‌کرک، تولید تیون در سلول‌های خلوت کننده مشاهده می‌گردد. در این رابطه، پان (Reseland) و همکاران عنوان کردن آن در میان هپاتوکینون‌ها و سلول‌های خلوت در بیوسیستم مناسب به میکروب‌ها و سبک‌های سطحی انسولین و گل‌کرک به‌صورت درست در این مطالعه می‌باشد (7). گر اریبان (Kratz) همکاران و همکاران عنوان کردن که چرب‌های غیراشباع و چرب‌های غیراشباع موجود در روغن کلزا به‌صورت اغلب می‌تواند ایجاد یک فاکتور دهم یکندن در جهت کاهش سطح پلاسمایا لپین می‌باشد. (8) اکر (Hsu) و همکاران (Okere) نیز پان داشتن که چرب‌های غیراشباع چرب‌های غذایی سبب کاهش سطح لپین سرم می‌شوند (13 و 22). در زمینه ارتباط لپین، هورمون‌های تهیه‌نی‌کننده و چرب‌های غیراشباع سبب نیش به پوشه‌های کوکینوس (Kokkinos) و همکاران، فرگنوسن (Boelen) و (Ferguson) همکاران و ویلیام اشاره کرد (5-2). کوکینوس و همکاران به نشانه لپین در نظم هوموستات‌نگری
References:


