ارزیابی حفاظت در ترادرف زن و استفاده از آن در تشخیص سریع ماکروباکتریوم توبرکلوزیس

میتا پراینده ۱، راضیه نظری ۱، محمود رضا ذوالفقاری ۱، محمد ارجمندزادگان ۲، اعظم احتمدی ۳، منا شجاع پور ۴، فریبا رجبی ۵

دانشگاه آزاد اسلامی، واحد قم، گروه میکروبیولوژی، قم، ایران

لیست اطلاعات مراجع:

۱. مرکز تحقیقات شل و عفونی کوکان و گروه ایمنی شناسی و میکروبی شناسی، دانشگاه پزشکی، دانشگاه علوم پزشکی اراک، اراک، ایران
۲. مرکز تحقیقات شل و عفونی کوکان، دانشگاه علوم پزشکی اراک، اراک، ایران
۳. مرکز تحقیقات پزشکی مولکولار، دانشگاه علوم پزشکی اراک، اراک، ایران
۴. دانشکده پزشکی، دانشگاه علوم پزشکی اراک، اراک، ایران

چکیده

زمینه: سرعت و نسبت سلولی ماکروباکتریوم توبرکلوزیس به روتوپیس RNA است که در ماکروباکتریوم توبرکلوزیس در کتربن carD نگهفته می‌شود. هدف از این تحقیق، ارزیابی حفاظت در ترادرف Zn و استفاده از آن در تشخیص سریع سوبه‌های کلینیکی ماکروباکتریوم توبرکلوزیس با استفاده از اپلیکاسیون نوینی پریمیر‌هایی از آن است. این تحقیق نشان می‌دهد که carD نسبت به آن در تشخیص سریع سوبه‌های کلینیکی ماکروباکتریوم توبرکلوزیس مولکولار نسبت به طراحی و تولید نیازمند گرفته‌است. بیشترین حفاظت الکترون در نمونه‌های مختلف کلینیکی در سوبه‌های مورد مطالعه کاملاً carD در مشابه‌های پروتئین در N و TRCF در نمونه‌های کپن ۱۷۹۷ و ۱۷۹۸ است. در نمونه‌های مختلف کلینیکی در سوبه‌های مورد مطالعه کاملاً carD در مشابه‌های پروتئین در N و TRCF در نمونه‌های کپن ۱۷۹۷ و ۱۷۹۸ است.

پژوهشکده زیست- پزشکی خلیج فارس
دانشگاه علوم پزشکی و خدمات بهداشتی درمانی بوشهر
مال هفدهم، شماره ۲۷۱ – ۲۷۲ (مرداد و شهریور ۱۳۹۳)

کلمات کلیدی: ماکروباکتریوم توبرکلوزیس، زن، سریع، سرعت و نسبت سلولی کوکان، گروه میکروبی‌شناسی، ایمنی‌شناسی، دانشگاه علوم پزشکی اراک

Email: arjomandzadegan@arakmu.ac.ir
مقدمه
حدود یک سوم جمعیت جهان (2 میلیارد نفر) آلوده به ماکروکاتریپس تروبیکلوزریس هستند و سالانه 10 میلیون مورد جدید سل برزوز می کند. هم اکنون بیش از 20 میلیون نفر به بیماری سل فعال مبتلا هستند (1).
ماکروکاتریپس تروبیکلوزریس بیش از هر عامل عفونی دیگری منجر به مرگ می شود. گزارش‌های اروپایی 32 درصد از موارد جدید را گزارش می دهند و قرارداد، روسیه، رومانی، اکراین و ازبکستان.

33 درصد بیشتر کیا تکامل می دهند (2).

طبق سال‌های گذشته، برخ و گسترش مقاومت‌داری، بیماری سل را در دندان ایجاد و همیشه در اولویت‌های سازمان بهداشت جهان قرار داده است. سل ایجاد شده در اثر سویه‌های حساس به دارد، در صورت درمان مناسب، در تبقیب تمام موارد قابل معالجه است و در صورتی که درمان نشود ممکن است در 50 تا 60 درصد از موارد، در عرض 5 سال منجر به مرگ گردد (1).

استلینگ و استفانو (Stallings & Stephanou) در سال 2009 اشاره کرده‌اند CarD پروتئین یک برک در اثر سلویا می‌شود که RNA پروتئینی با اکسید محلولی تروپیکلوزریس که شیمی به‌طور مقاومت نسبی در این 162 آمینودهی در این‌ها سکس و شامل یک است RNAP ثریمال موجه مشابه می‌باشد RNA (N 4، 6 و 15).

دامی دایم با اکسیدان آلیینی از توالی و ساختار پروتئین است که می‌تواند به‌طور مستقل از نپه زنجیره پروتئین علمرکد داشته باشد. هر دانه یک ساختار سه بعدی را تشکیل می‌دهد که اغلب می‌تواند به‌طور مستقل از توک و نیز با یک باشد.

بر اساسی از پروتئین‌ها دایر دانه‌های مختلف تروپیکلوزریس استاندارد مایکروکاتریپس تروبیکلوزریس و ماکروکاتریپس است. این پروتئین، دایر دانه‌های مختلف تروپیکلوزریس استاندارد مایکروکاتریپس تروبیکلوزریس و ماکروکاتریپس است.

http://bpums.ac.ir
پروتئین‌ها است که کار خاصی را به عهده دارد و معمولاً به همراه تکرارها و دومنه‌های دیگر پیدا می‌شوند (16). همچنین، GC loop-coiled-coil و leucine zipper، zinc finger و helix-loop-helix از موارد معمول موتیف شاملی هستند.

هدف‌های این بررسی احتمال حفاظت در تردید زن CarD و استفاده آن در تشخیص سریع ماکروباکتریوم تریکولورزیس با مقاومت آنتی‌بیوتیکی متفاوت می‌باشد.

مواد و روش‌ها

سویه‌های مورد مطالعه

در این تحقیق DNA جمعاً 38 سویه از بانک ازامان‌شاخه زیستی مولکولی مرکز تحقیقات DNA سل و عفونت کودکان دانشگاه علوم پزشکی اراک مورد استفاده قرار گرفتند. این مجموعه از سویه‌های ماکروباکتریوم تریکولورزیس که از بیماران مسلل با مقاومت آنتی‌بیوتیکی نسبت به داروهای خط اول درمان سل شامل (آرتوپازید، ریپآمپین، پیرازینامید و اتانامید) و تعدادی از داروهای خط دوم درمان شامل (فلورکوپولونا) داروهای تزریقی کاناماماین و آمیکاسن جدا شدند. استخراج گردن‌های H37Rv همچنین از سویه استاندارد در سویه‌های استاندارد اکتیو قرار گرفت.

طرح‌های پراپر

با توجه به هدف اصلی تحقیق که تعیین تردید و بررسی موثرات‌های احتمالی زن CarD بر پرپرها می‌باشد، به‌طور تحقیقی طراحی می‌شود که تمام ORF زن را در آمپلی فیکاسیون تکثیر نمایند. بدن منظر از Gene bank Blast و نرم‌افزارهای Integrated DNA Technology و Mega

پیرامیده و همکاران

نهایتاً برای پیامدهای این تردید تعیین شدند. در انتهای 2 پراپر در انتهای 3 پراپر فاصله A در میان AT، GATC(3')... و F در GC، RC(3')... تشکیل دارد.

برای آزمایش در ترمیم 2 پراپر از طریق آرامش، همزمان با انتخاب نتایج ذوب بین 36-70 و شناسایی ذوب بین 36-70 بر اساس Annealing دلیل ذوب پراپرها انتخاب شده بود (پیش 3-5)

F:5'-CGAAAGGGGGCTCAAATCGA-3' می‌باشد.
یافته‌ها
سویه‌های مورد مطالعه باکتری‌هایی با حساسیت آنتی‌بیوتیکی مختلف در این برسی با هدف پوشش دهنده انواع سویه‌های جدا شده از بیماران، انتخاب گردیدند.

PCR

تاریخ
قطعه ۲۴۲bp از زن CarD محصول Zn توسط PCR کشت ۱۸۹ نوکلئوتید زن CarD و مابقی متعلق به پرایمرها واقع شده در مناطق بین Zn مورد مطالعه و Zn زن مشابه.

توالی تکثیر شده این قطعه در نمونه‌های مختلف، پکسین بوده و کگلی در این نمایشگاه را نشان می‌دهد. این قطعه از شکل ۱ نشان داده شده است. این سلولی صحت طراحی منطقه انتخاب شده و نیز محاسبه صحیح برنامه PCR را اثبات نمود.

کاریوگرافی

بررسی وجود Zn تکثیر شده با انجم Zn الکتروفوروز روي آگاز انجام پذیرفت. در این استفاده Safe Stain مورد روش و انجام گردید. به عمل آمد.

تعیین توالی (DNA Sequencing)

محصول PCR جهت تحلیل با روش ستونی و نیز بی‌نیزتی و یافته‌های آنتی‌بیوتیکی انجام شد. نتایج تعیین توالی با کمک نرم‌افزار Blast ثبت گردید. تعیین توالی با کمک نرم‌افزار R و F و Gene Bank تحلیل و در منطق گردیدند.

R:5-TAGAGCCTAGGGCGGTCAAGA-3

انجام

واکنش آمیل فیکاسیون در حجم نهایی ۵۰ میکرولیتر حاوی (10 نانوگرم استخراج میکرو‌لیتر یک میلی‌لیتر از dNTPs بافر (X), 1/۵ میکرولیتر کریستال میکسیوم انجم گردید. جرخه حارته برای آمیل فیکاسیون Zn CarD شو و دما اولیه ۹۴ درجه سانتی‌گراد برای ۷ دقیقه، ۱۰۴ سی‌پیکلس بر قرار داده شد و ۹۴ درجه سانتی‌گراد برای ۵ دقیقه، ۲۳ درجه سانتی‌گراد برای ۳۰ ثانیه. در دمای پایین ۷۲ درجه سانتی‌گراد برای ۷ دقیقه استفاده گردید.


carD

شکل ۱: الکتروفوراژ طرفه ۴۴۳bp زن CarD

نتایج توالی بای ۲

اجراي توالي بايي (مکسنسینگ) Zn در سویه‌های مورد مطالعه، توالي کاسانی را ارائه نمود (شکل ۲).

http://bpums.ac.ir
CarD is a protein that plays a role in bacterial transcriptional repair coupling (TRCF) in Escherichia coli. Expression of CarD is regulated by an intestinal bacterial signaling peptide, CarD promotes cell survival in the intestine by enhancing the expression of genes involved in inflammation and immune system evasion. CarD knockouts exhibit increased pathogenicity, indicating that it serves as a barrier against infection by pathogenic bacteria. Mutant derivatives of CarD have been used to study the role of the protein in host-cell interactions and to understand the mechanisms of bacterial infection.

The CarD gene is located on the chromosome and is transcribed as a single open reading frame. The protein is encoded by the carD gene and is a member of the Car family. CarD is a member of the Car family, which is involved in the regulation of bacterial cell division. The CarD protein contains several domains, including a domain related to the ATPase domain and a domain related to the RNA polymerase domain. The CarD protein is involved in the regulation of bacterial cell division and is essential for bacterial viability and survival.

http://bpums.ac.ir
منشleh شده و یا عملکرد مشخص دارد: به هرکرت در آوردن کمپلکس سه‌گانه طول‌ساز RNA پلی‌مراز و برای ترمیم استفاده از Uvr(A)BC exculase.

اجتمایه‌ای است (۱۸). در این تحقیق یک نمونه‌ی گردید که دامی در سوی‌های کلینیکی مایو‌کیدی کمری‌بندی‌کننده‌ای کاملاً حفاظت‌شده است. این منطقه‌ی در شکل (۲) (منطقه‌ی V) ترمیمال بروتین (CarD) از آن مشخص شده است. همان‌گونه که مشاهده می‌شود تان بروتین TRCF این بروتین تردد ایزدی‌نیمی مشابه TRCF شان می‌دهد (۱۸).

با توجه به ضرورت حضور ۵/۳ زیر وابستگی ماده جهت انجام CarD در پروتئین (αββ') RNApol فراپید نسخه‌برداری تازه به وجود ساختار حفاظت‌شده این بروتین قابل درک است که در این مطالعه به‌دست آمده بروتین ساختار بروتین و عدم conservative رخ خاصی بوده‌اند در سوی‌های جدید شده از بیماران به اثبات رسیده‌اند.

کردن تولید یافته بست Multiple Alignment با آمده در این تحقیق، یک سری نوواحی خاص روز تولید یافته بروتین CarD مشخص گردید. این تولید‌ها جهت ساختار و چه در تولید‌شان، از این لحاظ که باعث بوده‌اند یک سرنوشت چگی‌هاهای عملیاتی با ویژگی‌های کسبناخته و یا فعالیت‌های آزمایشی شده‌اند. و یا با در شکل گیری ساختار سوم آن بروتین نقش داشته‌اند. اهمیت داشته‌اند (شکل ۳).

به علاوه، این بروتین یک تنظیم کننده ضروری برای روندی‌های RNA پلی‌مراز و پیدا نشان داده‌اند. این بروتین تکنیک آماده‌بودن RNA به هدف ترمینال دامین انجام CarD به‌رونهای مایو‌کیدی‌کمری و عملکرد این بروتین

http://bpums.ac.ir
پیش‌بینی زن در مایکروکاتربیوم نوری کلونی‌سازی / ۲۶۹

پاسخ‌گویی نیوده و طول درمان، میزان موقعیت آن و هزینه‌ها کاملاً تغییر کردنداشته (۱۱ و ۱۹). به‌همین دلیل، در این مطالعه، به‌دست‌آورده‌های بررسی تمرکز اصلی روش سویه‌ها مقاوم به دارو (MDR) مطرح گردید. و می‌توان این داده‌ها را برای سایر مطالعات نیز تعیین داد.

نتیجه‌گیری

با توجه به اهمیت این زن در حیات باکتری و حفاظت بودن (Highly conservative) آن در مقایسه با سایر باکتری‌ها و نیز سویه‌ها، بالینی مقاوم و حساس به داروی مورد مطالعه در این بررسی پیشنهاد می‌شود در تحقیقات آینده با یافته‌های محارب کننده مناسب CarD برای پروتئین حفاظت شده (Inhibitor).

References:


http://bpums.ac.ir
Evaluation of conservation in carD sequence’s gene and its application in rapid detection of Mycobacterium tuberculosis

M. Pirayandeh 1, R. Nazari 1, MR. Zolfaghari 1, M Arjmandzadegan 2*, A. Ahmadi 3, M shajapoor 4, F. Rajabi 5

1 Department of Microbiology, Qom branch, Islamic Azad University, Qom, IRAN
2 Tuberculosis and Pediatric Infectious Research Center and Department of Immunology and Microbiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, IRAN
3 Tuberculosis and Pediatric Infectious Research Center, Arak University of Medical Sciences, Arak, IRAN
4 Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, IRAN
5 Departments of Microbiology, Medicine School, Arak University of Medical Sciences, Arak, IRAN

(Received 6 Jun, 2012 Accepted 15 Aug, 2012)

Abstract
Background: Mycobacterium tuberculosis growth rate is closely coupled to rRNA transcription which is regulated through CarD gene. The aim of this work was evaluation of conservation in CarD gene’s sequence and its application in rapid detection of Mycobacterium tuberculosis.

Materials and Methods: 38 clinical isolates of M. tuberculosis with different types of drug resistance were selected. PCR conditions and annealing temperature were selected by calculating thermal denaturation. Electrophoreses confirmed the presence of the amplified gene. Purified PCR product was sequenced by sequencer.

Results: The size of amplified fragment of CarD gene was similar in all samples. By translation of nucleotide mode to amino acids it was found that TRCF domain in N-terminal of protein CarD was fully conserved.

Conclusion: This is the first study on the CarD gene in clinical isolates of MTB. This gene is recommended for use as a target for designing of suitable inhibitors as anti tuberculosis drug because of its importance in life of Mycobacterium Tuberculosis and being a conservative gene.

Key Words: Mycobacterium tuberculosis, CarD gene, sequence

*Address for correspondence: Tuberculosis and Pediatric Infectious Research Center and Department of Microbiology, Arak University of Medical Sciences, Arak, IRAN, Email: arjomandzadegan@arakmu.ac.ir

Website: http://bpums.ac.ir
Journal Address: http://ismj.bpums.ac.ir