اصلاح زیستی سواحل آلوده به PAHs با استفاده از بیوسورفتکانت
تولیدی از باکتری‌های جداسازی شده از خلیج فارس

سهد جرجی، محمد حسن بازافکن، اسید مریم موسوی، سمانه میرعالی
1 گروه بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی جنوبی شیراز، اهواز، ایران
2 مرکز تحقیقات فناوری زیست محیطی، دانشگاه علوم پزشکی جنوبی شیراز، اهواز، ایران

چکیده
محصول احتراق ناقص سوخت‌های فیبری بوده و به دلیل ماهیت نشر، آلوده خاک و سواحل به شمار می‌رود. این فعالیت در زمینه آلودگی‌های دارای اولویت سرطان‌زا و بهداشتی قطعی به شمار می‌رود. دوباره اصلی باکتری‌های مناطق آلوده به PAHs مانند آن‌ها یافت شده گروه‌ها و آلودگی‌های اولویت خاک و سواحل به شمار می‌رود. هدف اصلی این پژوهش تعیین زیست تولیدی فناوری‌های زیست محیطی و استفاده از گونه‌های باکتری‌ای جداسازی شده از خلیج فارس می‌باشد.

مواد و روش‌ها: با غربالگری اولیه، یک گونه باسیلیس sp با قابلیت تولید سوخت‌گیر که در آزمایش‌گاهان جداسازی و خاصیت سازی گردید، به کنسپسیون باکتری‌ای مخلوط مشکل از سه گونه باکتری‌ای با قابلیت منابع‌رسانی از سواحل آلوده خارک جداسازی و به عنوان بازرونی استفاده شد. تیم‌های آلودگی‌های دارای آلودگی مصنوعی با غلظت اولیه میلی‌گرم بر کیلوگرم 100 و دارای آلودگی طبیعی طی 9 هفته متوالی مورد اصلاح زیستی قرار گرفتند.

یافته‌ها: بازکردن حذف فناوری تیم‌های آلودگی و دارای آلودگی مصنوعی و طبیعی به ترتیب 82 درصد و 39 درصد بود. بازکردن حذف دارای آلودگی مصنوعی و فاقد بیوسورفتکانت 11 درصد بود.

نتیجه‌گیری: فرآیند اصلاح زیستی با استفاده از بیوسورفتکانت‌های مکروریشته و کارآمد، دوست‌دار محیط زیست و عملیاتی برای اصلاح سواحل و خاک‌های آلوده به هیدروگرافی‌های ناشی به شمار می‌رود. پژوهشکده اصلاح زیستی، بیوسورفتکانت، اصلاح زیستی.

Email: Sahand369@yahoo.com
مقدمه

هیدروکربن‌های آراتوماتیک (PAHs) ۱ در زمینه تحقیقات شیمیایی آلی طبیعی مشکل از دو یا چند ترکیب شیمیایی آراماتیک یک هستند. احتراف ناکارهای هیدروکربن‌ها و سوخت‌های فصلی معنی اصلی هیدروکربن‌های آراماتیک چند حلقه‌ای است. آلودگی خاک و رسوایی به هیدروکربن‌های آراماتیک چند حلقه‌ای در اطراف میادین نفت، اکتشافگاه‌ها، اکتشافگاه‌های نفتی و خطوط انتقال نفت و گاز گزارش شده است (1).

آغازی‌های هیدروکربن‌های آراماتیک چند حلقه‌ای، معنی به شکلی پایدار به ترکیب‌های مهند در محیط می‌شود. هدف هیدروکربن‌های آراماتیک چند حلقه‌ای به سادگی جدایی فاز مایع خاک، دشک و پیوسته ممکن است وضعیت خاک تشکیل می‌دهد (2). به دلیل مخاطرات سطحی نزدیک و جهش‌زایی برای انسان و جانوران و پایداری محیطی، آزاد حفاظت محیط زیست امکان این ترکیبات در زمرو آلایندگی دارا، اولویت قرار داده است (3). انواع روی‌ها فیزیکی، شیمیایی، زیستی و تلفیق آنها شامل تخریب حرارتی، شستشوی شیمیایی خاک، تخریب فتوکاتیکی، از زنی کاتالیزوری، فرابندهای فوق‌المداون و اصلاح شده برای اصلاح خاک‌های آلوده به هیدروکربن‌های مورد بررسی قرار گرفته‌اند. روی‌های اصلاح زیستی به دلیل دسته‌بندی جنتیتی زیستی، پیوسته، دیپنژیکال فراکس، جنبه‌های اتصال، اجاق و محفظه‌های جانی و پایانی کمتر در محل آلوده مورد توجه محفظان بوده‌اند (4) و (5). مشکل فرابندهای زیستی زمان بر بودن و ضرورت جداسازی و خاصیت تکنیکی دارای توانمندی تجزیه‌های هیدروکربن‌های نفتی

1 Poly Cyclic Aromatic Hydrocarbons

http://bpums.ac.ir
پژوهش علمی قابلیت باکتری‌های پاسیب‌ساز جداسازی شده از آب‌های ساحل خلیج فارس در تولید سورفکتین‌های منظور حذف فانتون از خاک‌های دارای آلودگی مصنوعی به فانتون به عنوان هدف اصلی تحقیق تعیین شده است.

مواد و روش‌ها

جداسازی و غنی‌سازی باکتری‌های تجزیه کننده فانتون


250 میلی‌لیتر حاوي 100 میلی‌لیتر محیط کشت معدنی بایو فسفات اضافه و به مدت 20 دقیقه به وسیله یک همزن مغناطیسی به شدت همکاری شد. در ادامه خاک به مدت 10 دقیقه تنظیم شد و سپس در آن جداسازی و به عنوان منع باکتری‌های تجزیه کننده فانتون به کار رفت. در ادامه 5 میلی‌لیتر از این فاز محلول روبیون به یک ارلن 250 میلی‌لیتر حاوی 95 میلی‌لیتر محیط کشت معدنی استریل منتقل گردید.

ترکیب محیط کشت معدنی استفاده در K2HPO4، KH2PO4، CaCl2.H2O، MgSO4.7H2O، MnSO4.H2O، FeSO4.7H2O، KCl و CoCl2.6H2O، ZnSO4.7H2O، CuSO4.2H2O و NaMoO4

http://bpums.ac.ir
اتصالی محیط کشت مکمل اختصاصی خاصیت‌داری شدند. این سیوی‌های خاصل در شرایط استریل به محیط کشت معدنی تازه منتقل و بر روی شیکر اکسپلور با سرعت 180 دور در دقیقه در دمای 31 درجه سانتی‌گراد گرمایداری شدند. در این مرحله 8 ارلن مایر دارای سیوی خاصل موجود بود. پس از سه بار تکرار کشت از 1 هفته‌ای، آگروشت‌های کشت با سرعت 10000 گرادیان به مدت 15 دقیقه در 4 درجه سانتی‌گراد سانتی‌فیوز شده تا بقا‌بای سولوی حدف شده و سپس از صافی‌های پور عبور داده شدند. غیرالطبیعی کندنهای بیوپوروفکانت به روش چاپ‌گیری قطعه نفت انجام شد (21).

سوپراتنر شفاف به عنوان منبع بیوپوروفکانت خام در نظر گرفته شد گونه باسیلون منتقل بر اساس غربال‌های اولیه و قطر چاپ‌گیری ثابت کننده بیوپوروفکانت انجام شد. منابع روش چاپ‌گیری قطعه نفت از ماده 15 میکرولتر سوپراتنر محیط کشت میکروبرنر را در بین 50 میلی‌لیتر آب مکمل و 20 میکرولتر نفت خام است. اگر سوپراتنر محیط کشت بیوپوروفکانت باشد، بر روی نفت با شکاف اضافه شده بر روی رنگ نیافته رنگ پایین بر روی رنگ شده بر روی نفت با شکاف اضافه شده بر روی رنگ نیافته رنگ پایین بر روی رنگ شده.

کلنی گونه باسیلون به محیط کشت نورتریت بیاکتیو شده و سپس 2/5 میکروبرنر از این بذر میکروپایو OD600 میلی‌لیتر با 1 بایو‌پی این پایشی‌های باسیلون SP برای شناسایی گونه باسیلون آزمایش گردید کشت در محیط مایع و رفرش‌های این نمونه‌ها. کشت از محیط مایع به محیط‌های جامد
اصلاح زیستی سواحل آلوده به PAHs

جرف و همکاران

مدت 7 روز در 31 درجه سانتی‌گراد بر روی شیکر با دور 180 rpm انکوبه می‌شوند. برای استخراج بیوسورفکت‌ها 40 میلی‌لیتر آب مفطر و 10 میلی‌لیتر کلروفم میانال به نسبت 2 به 1 حجمی به مخلوط اضافه می‌شود و به مدت 10 دقیقه همده شد. سپس مخلوط از یک فیلتر کاغذی عبور داده می‌شود و برای حدف بقایای سلولی به مدت 15 دقیقه با سرعت 10000 گرادیان در دمای 2 درجه سانتی‌گراد سانتریفوژ می‌شود. pH محلول 

استخراج شده نهایی با HCL در ترمال بر روی تنظیم شد تا بیوسورفکت تولیدی روابط کند. سپس روی‌ها به دور 10000 گرادیان به مدت 10 دقیقه سانتریفوژ شدند. تبخیر خالی آن تحت خلاء منجر به تولید بیوسورفکت خالص می‌شود (۶). هم‌هی اکچاب نسبت به تکرار انجام شده و از آب مقطر به عنوان شاهد استفاده می‌شد.

آلوده‌سازی سواحلی به فنترین

نمونه روسب ساحلی از اسکله‌های نزدیک جنوب کشور و از لایه‌های 1 تا 20 سانتی‌متر عمق خاک ساحلی برداشت شد. این نمونه از انکل با مش 2 عبور داده شد و به منظور استخراج ترکیبات آلی استحکام‌ساز خشک گردید. سپس اتوکلاور شده و در دمای 6 درجه سانتی‌گراد در یخچال نگهداری شد. برای آلوده‌سازی خاک به غلظت 100 میلی‌گرم بر لیتر، 20 میلی‌لیتر از یک محلول ذخیره‌فنترین با غلظت 50 میلی‌گرم بر لیتر با عبور از صافی به وسیله‌سنگ به نمونه‌ها خاک (۳۰) گرم خاک تزریق شد. نمونه‌ها به مدت 48 ساعت در زیر هوا و در شرایط استریل نگهداری گردید. 

http://bpums.ac.ir
میلی‌متر تعین شد. دمای ستون از ۲۳۰ تا ۳۷۰ درجه سانتی‌گراد تنظیم شد. نمونه‌ها به مدت ۶۳ روز در هنگه یک مرتی مورد پایی قرار گرفتند.

یافته‌ها
نمونه‌های خاک مقادیر بالای ۲۷ درصد سیل، ۳۳/۸ درصد رس و ۲۹ درصد ماسه در از نوع ماسه‌ای سیلیکت، نتایج آنالیز XRF برای شناسایی اجزا موجود در خاک در جدول ۲ آمده است.

جدول (۲) مشخصات فیزیکی و شیمیایی نمونه‌های خاک مورد استفاده در پژوهش به دست آمده از آنالیز XRF

<table>
<thead>
<tr>
<th>شیمیایی</th>
<th>میزان (٪)</th>
<th>میزان (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>۴۷/۸</td>
<td>۴۷/۸</td>
</tr>
<tr>
<td>P۲O۵</td>
<td>۲/۳</td>
<td>۲/۳</td>
</tr>
<tr>
<td>K۲O</td>
<td>۴/۸</td>
<td>۴/۸</td>
</tr>
<tr>
<td>CaO</td>
<td>۲/۹</td>
<td>۲/۹</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۱/۳</td>
<td>۱/۳</td>
</tr>
<tr>
<td>Fe۲O۳</td>
<td>۵/۵</td>
<td>۵/۵</td>
</tr>
<tr>
<td>Cu</td>
<td>۲/۱</td>
<td>۲/۱</td>
</tr>
<tr>
<td>Sr</td>
<td>۱/۳</td>
<td>۱/۳</td>
</tr>
<tr>
<td>Zr</td>
<td>۱/۳</td>
<td>۱/۳</td>
</tr>
</tbody>
</table>

باکتری تولید کننده بیوسورفتکنت
بر مبنای روش جداسازی شرح داده شده و غربالگری أولیه با آزمون گلیگری قطره نفت، یک گونه باکتری‌ای با قابلیت ایجاد حفره در روابط نفت با قطر ۱/۲ سانتی‌متر به عنوان گونه بیوسورفتکنت انتخاب شد. آنالیز‌های بیوشیمیایی شامل گرم مثبت، تکامل هندسه اسپرتی اسپرنشوس با پایوسیاس CMC با نتایج مشابه گرم زمین، با توجه به نوع باکتری، SSP GC امکان بررسی زیست‌محیطی اکوسیستم‌ها از طریق آنالیز انتقال اشعه ایکس (XRD) و آنتی‌افورسکن اشعه ایکس (XRF) تعیین گردیدند. مشخصات دستگاه XRD به شرح زیر بود: دستگاه فیلیپس مدل PW2040 ساخت هند، لوله Cu kα ۱۰۰۰ویل، ولتاژ: ۳۰۰ کیلو ولت، جریان ۳۰ میلی‌آمپ. دستگاه XRF یک دستگاه کیتوپولیس و مدل PW2040 ساخت کشور هلند بود.

روش‌های آزمایشگاهی
استخراج فانئترن از خاک و سنجش آن به وسیله دستگاه GC بر اساس روش ساماندو تحقیقات محیط زیست امریکا با ترکیب زیر اندازه شد: توزین ۲ گرم خاک خشک‌سازی نمونه در ۶۰ درجه سانتی‌گراد اضافه کردن ۱۰ میلی‌لیتر چربی اتانول و هگن (استاندارد آمریکا) استخراج به مکث اوتوماتونیک (۲۰ دقیقه با جام اوتوماتونیک). عبور از فیلتر PTFE و ترکیب ۲ میکرو‌لیتر به دستگاه کرومانتوگرافی‌گازی از طریق آنتی‌افورسکن CMC انجام می‌پذیرد. دستگاه مجهز به دکتریو پالسیو شعله (FID) و یک پرودنس بنا بر انتخاب از ستون کابیلاری HPS به طول ۳۰ متر قطر داخلی ۲/۳ میلی‌متر بر روی ترکیب CMC و PTFE می‌باشد. 

http://bpums.ac.ir
مقایسه شرایط مختلف اصلاح زیستی

با زدن حذف فانتانار در شرایط مختلف مورد مطالعه در نمونه‌های ۳ نشان داده شده است. بیشترین حذف مشاهده شده در نمونه‌های سورفنتین به میزان ۳ برابر CMC گلخانه با حذف ۲۲ درصد و معابد آن نمونه‌های حاصل از ۱ و ۲ CMC حذف به ترتیب ۷۲ و ۶۷ درصد مشاهده شد. همچنین نمونه‌ها فاقد هرگونه بیوسورفنتین دارای پایداری حذف ۴۰ درصد بود. با زدن حذف فانتانار در نمونه واقعی ۳۹ درصد و در شاهد شیمیایی ۱۱ درصد بود.

بحث

بیشترین پایداری حذف در نمونه‌های حاصل از سورفنتین به میزان ۲۱ درصد به دست آمده که بسیار بیشتر از پایداری حذف در نمونه‌های فاقد هرگونه سورفنتین بود. این برتری به اثر مکانیزم کنیشی بیوسورفنتین در زمان مشابه نسبت داده می‌شود. با زدن حذف در نمونه‌های واقعی ۲۹ درصد بود. این با زدن حذف کمتر از شرایط مشابه آزمایشگاهی است که علت آن احتمالاً غلظت CMC جمعیت بالاتر در حاضر می‌باشد. همچنین کنیشی سورفنتین باید در نظر گرفته شود که غلظت کل هرگونه ماده آلی زیست تجزیه‌پذیر است که غلظت کل محتوای آلی خاک را در مقابل با نمونه سطحی زیست‌شناسی می‌دهد. لذا این با زدن حذف با نمونه مصنوعی فاقد بیوسورفنتین در

http://bpums.ac.ir
زمان مشابه برای می‌نماید. علت این برای وجود بیوسورفتکان در مطالعه آنها نیز ابتدای شد که این روند در یک‌وزه فعال نیز مشاهده گردید (پازده حرف‌آوری 42 درصدی در مطالعه خانواده سرطانکارین در مقایسه با باید ۴٠ درصدی در مطالعه‌ها فاقد آن) (۵۵). با کیک از دلال‌الحمایی حذف ۱۰۰ درصدی فانلین در مطالعه فاقد هرگونه بیوسورفتکان، علاوه بر توانمندی‌های ذاتی سویه باکتری‌ای لتقه‌ی شده و احتمال بسیار جزئی فانلین نمی‌تواند به تولدی ترکیبات پلیمری خارج سلولی از این باکتری‌ها و نیز انتشار آنها در محلول (EPS) و اینکه پس از مرکز این باکتری‌ها باشند. این امر‌ها به افزایش تنشدری‌ی دیسی به آینده آگریز کمک می‌نماید، هر چند که خصوصیات این EPS شاخص املاوسون کننده و قدرت CMC غلظت (جفت کاوش کش صطحی در مقایسه با انواع دیگر نظیر رامون‌ویلدا و سرتسویکینی بهتر ضعیف‌تر مایلی‌است. این فرضیه در برخی مطالعات مشابه مورد تصمیم قرار گرفته است (۹۶). اما از آنجا که EPS دارای سرعت آب‌بر و نیروی دار به طور کلی مشابه سرعت در آب‌بر و نیروی دار به طور کلی مشابه است. با این حال، با کاهش تنش در محیط مطالعه، تأثیر باکتری‌ها و اوشپتگ‌ها به پایین‌تر می‌آید (۹۶).

اوشپتگ‌ها به دنبال توجه به فیبرسیم و نیز در حالتی که آنها به سطح و محتوای اولیه می‌نماید بیوسورفتکان در محلول فعال و گرم نشده نیز مشاهده شدند. این در نهایت به تعداد ۹۹ درصد افزایش داد تا در حالی که باید معدود شدن در نمونه‌ها فاقد بیوسورفتکان ۳۸ درصد بود. باز هم این حذف فانلین و نیز زمان معدود شدن در این پژوهش بستر از مطالعه فعال است که علت آن می‌تواند غلظت اولیه فانلین کمتر باشد. به طور کلی بزرگ و نوع

http://bpums.ac.ir
کاتالازی که با تجزیه هیدروکربن‌های آروماتیک چند حلقه‌ای در ارتباط، تجزیه می‌شوند (28). این عوامل در تجزیه فنانتن در نمونه‌های فاقد هگونه بیوسورفکتیک، مؤثر بوده‌اند. نمونه شیمیایی راک‌پری بذر میکروبی نشان‌گری خود را با استفاده از پژوهش نشانگر رصد می‌بند. کاهش میزان در روند پژوهش جدی سطحی نهایی در اثر رادیکال‌های مقاوم به سختی نشان دهنده که به عنوان رادیکال‌های سرطان‌زا و سلول‌سوز می‌باشند. به دلیل فقدان بهبود میکروبی و چسبندگی زیستی حذف نسخه‌های آزاد و احتمال سرطان و سلول‌سوز شیمیایی به دلیل اثرات سال Polygonatum انگ که بوده است. با مقایسه پیشرفت این نمونه‌ها با نمونه‌های حاصل فرد پژوهشگری و نمونه بیوسورفکتیک می‌توان نتیجه گیری کرد که اثر وجود بذر میکروبی و اصلاح زیستی پیشرفت ت担保 بیوسورفکتیک و وارجیب شیمیایی است.

نتیجه‌گیری

با توجه به نتایج این پژوهش می‌توان اظهار نمود که باکتری‌های بومی جداسازی شده از خلیل فارس و

References:


http://bpums.ac.ir

http://bpums.ac.ir
Bioremediation of polluted beaches with PAHs by using biosurfactant produced by bacterium isolated from Persian Gulf

S. Jorfi 1,2*, N. Jafarzadeh Haghighifard 1,2, M. Ahmadi 1,2, A. Takdastan 1,2, MH. Bazafkan 1, M. Mousavi 1, S. Mirali 1

1 Department of Environmental Health, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2 Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

(Received 25 Feb, 2015 Accepted 8 Jun, 2015)

Abstract

Background: PAHs was produced from incomplete combustion of fossil fuels and due to nature of publishing, it was categorized as the soil and beaches pollutant. These compounds are considered in pollutants which have priority, carcinogenic and certain mutagenic. The main difficulty of clearing contaminated areas to PAHs is the nature of highly water repellent of these pollutants and a strong attraction to the soil texture. The main objective of this current study was to determine the efficiency of phenanthrene removal from contaminated soil and beaches by using biosurfactant produced by a bacterium isolated from Persian Gulf.

Materials & Methods: with primary screening, a Bacillus sp strain with surfactin production capability was isolated and purified in laboratory. A mixed bacterial consortium isolated which was consists of three bacterial species with of capable of metabolism of phenanthrene from Khark contaminated beaches and was used as a microbial seed. The synthetic soil samples with initial phenanthrene concentration of 100 mg/kg and also natural contaminated samples were subjected to bioremediation during 9 weeks.

Results: The phenanthrene removal efficiency in the samples containing biosurfactants and with artificial and natural pollution were 82% and 39% respectively. The removal efficiency for samples without biosurfactant was 11%.

Conclusion: The bioremediation process is considered an efficient, eco-friendly and operational for remediation of beach and soil polluted by petroleum hydrocarbons by using bacterial biosurfactant.

Key words: beches polluted, PAHs, Biosurfactan, Bioremediation