مهمترین توكسين‌های باکتریایی دریا؛ یک مطالعه مروری

اکرم نجفی، ایرج نی‌پور

1 مرکز تحقیقات زیست فناوری دریایی خلیج فارس، پژوهشگاه علوم زیست پزشکی خلیج فارس، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران

(دریافت مقاله: 95/3/10 - پذیرش مقاله: 95/4/8)

چکیده

زمینه: توكسين‌های میکروبی، تركیبات سییستیک که با هدف ایجاد بیماری و یا در پاسخ به سیستم ایمنی میزان به منظور پناه، تولید می‌گرددند. شواهد زیادی می‌بایست در تشخیص توكسین‌های شانگهای شده دریای مانند ترودوتوکسین، بایل توكسین، نوروسروتوكسین و غیره وجود دارد. در این مطالعه مروری، مهمترین سامان دریایی تولید شده توسط گونه‌های مختلف باکتری‌های دریایی، منشا، ساختار و مکانیسم اثر بررسی شده‌اند.

مواد و روش‌ها: در این مطالعه مقالات نامی‌شده در Scirus و Google Scholar، Science Direct و Pubmed مورد بررسی قرار گرفتند. واژگان مرور جهت جستجو باکتری، توكسین‌های دریایی، مکانیسم فعالیت و ساختار بودند. در مجموع از میان 120 مقاله و گزارش، با حذف موارد مشابه، در نهایت تعداد 103 مقاله ارزیابی گردید.

پایل‌ها: پیش‌توكسین‌های باکتریایی دریایی در یکی از گروه‌های نورتوکسین‌ها، هیپنفایتوکسین‌ها و سیتوتوكسین‌ها قرار می‌گیرند. این توكسین‌ها با انسداد کالی‌ها و سیلی‌ها در سلول‌ها عصبی، عمل به صورت آگگلیست گریزند. های اسپی‌های غلیظی، هیور فعالیت آنزیمی پروتئین‌سازانه نوع 1 و 2 و همان‌ست پروتئین نش عامل‌کننده خود را افا می‌نمایند.

نتیجه‌گیری: شواهد به دست آمده از مطالعات پیشین نشان می‌دهد که آگاهی از ساختار شیمیایی و مکانیسم عمل این توكسین‌ها می‌تواند از روش‌های در طراحی داروهای جدید، درمان بیماری‌ها و نیز مبارزه با بیماری‌ای بانش، واژگان کلیدی: باکتری‌های دریایی، توكسین‌های دریایی، سامپسی‌های دریایی، توتکسین‌های دریایی

Email: akna85@gmail.com
در این مطالعه موروث، مهمترین سوموم دررايي توليد شده توسط گونه معروف باکتری‌های دررايی، ساختار و مکانیسم اثر آنها را مورد بررسی قرار خواهیم داد.


toxikon
1 Biotoxin
2

مقدمه
در بیش از ۷۰ درصد از سطح کره زمین را پوشانده است. این محتوای انواع زیستی خارج از گونه‌ها بروز می‌دهد و به طوری که بیش از ۹۵ درصد از کل بیوشفر (زیست‌کره) را در خود جای داده است. نوع میکروبی در این محیط منع به‌هایی از ترکیبات شیمیایی جدید را ایجاد نموده است. اگرچه ۹۹ درصد از ترکیبات میکروبی مانند بیوتئکسها و متابولیت‌ها از میکوراگانیسم‌های خاکی مشتق شده‌اند، با این وجود از آوازدهم قرن میلادی به ترکیبات جدید و مهم زیستی از مانند دریا که کمتر مورد بررسی قرار گرفته، آگاه گردیدیم (۱ و ۲).

در طول تاریخ، ساده‌ترین مطالعات گذاشته شنده می‌باشد که یک جستجو با عنوان "دارو از دریا" با افزایش ۱۲ درصدی در هر سال مواجه بوده است و این میزان در حال افزایش می‌باشد. با اضافه به جراینگیون گرفت اینونسیاها، توانایی عظیمی از ترکیبات و محصولات طبیعی منحصر به فرد و مواد فعال زیستی ابداع کننده و شکاف‌آور می‌باشند که هرگز در محیط زیست زمین یافت نمی‌گردد (۳ و ۴).

برای تکریک‌های میکرو‌ای، ترکیبات هستنده که به وسیله میکوراگانیسم‌های مانند باکتری‌های، ویروس‌ها و فارما تولید می‌شوند. این ترکیبات از عوامل مهم بیماری‌زا میکروبی بوده و با هدف ایجاد بیماری و یا در پاسخ به سیستم ایمنی می‌باشند به منظور پا تولید می‌گردد (۵). از طرف دیگر، تکریک‌های میکروبی دارای کاربردهای دیگری در علم پزشکی نیز می‌باشند.

از این میان می‌توان به استفاده از آنها به عنوان ابزار در تروپولوازی و زیست‌شناسی سلولی، مبارزه با بیماری‌زا میکروبی و توسعه داروهای ضد سرطانی جدید و سایر داروها اشاره نمود (۶).

http://bpums.ac.ir


1 Toxikon
2 Biotoxin
گلیکوپروتنی، غانگلیوژید، استروئول و مولکول‌های ناشناخته دیگر باشند (۷).

توصیف‌برانگیzar و رود به سطح میزان حداکثر از دو نوع مکانیسم استفاده می‌کنند:

۱- ورد مستقیم: برخی از سرمازده‌پروری‌های A و B مولکول‌پارا با ورود از سلول‌های تعابیر نیز توصیف شده‌اند. در این مکانیسم، بخش A از تکسین، به جای از خاصیت خود سطح میزان ممکن است در شرایط تهیه شده باشد و A ناشناخته پارا در طبیعی می‌باشد. از این حرف به درون سیستم انسان می‌باشد (۸).

۲- ورد نتوسط اوتودیوب وابسته به ریزه: در این مکانیسم A یا از اتصال تکسین به سطح سلول میزان، ورد نتوسط اوتودیوب در سطح ایفای می‌گردد. در این حرف به جای از خاصیت خود سطح میزان، A ناشناخته پارا در طبیعی می‌باشد. از این حرف به درون سیستم انسان می‌باشد (۸). شرایط اسیدی pH تولید شده بخش B را از خصوصیات حداکثر دو می‌باشد و به B ناشناخته پارا در طبیعی می‌باشد. از این حرف به درون سیستم انسان می‌باشد (۸).

نفحه باکتری‌های همبست در تولید مپایوله‌های ناحیه

در کنارش به منظور جستجوی محلول‌های طبیعی در بیماری، مطالعات بر روی گیاهان درمانی و بر مهگران نم‌تن مصرف بوده است با توجه به اینکه تقریباً تمام موجودات جمع‌آوری شده برای مطالعه شیمیایی دارای میکروب‌هاسته‌های همبسته بوده‌اند، باید به این سوال در مورد مشاهده این ارث‌ریز موثر شیمیایی مولکول‌های جدا شده از

استقرار در میزان، مقاومت و رژیم از مکانیسم‌های دفاعی میزان می‌سازند، عمل می‌نمایند (۶).

اگرچه سرمباکتری‌ها برای سال‌های زیادی مورد مطالعه قرار گرفته‌اند، اما تعداد کمی از آنها به طور کامل شناخته شده و مکانیسم فعالیت آنها در سطح مولکول‌پارا تغییر شده‌اند.

توکسین‌های باکتری‌ها را به طور کلی می‌توان به دو دسته تقسیم‌بندی نمود:

۱- اندوتکسین‌ها: از اجزای دوباره سلول باکتری‌های مانند غشاء خارجی (بیابیکس) و پس از لیز باکتری، به درون مطبوع آزاد می‌شوند. از بارزترین اندوتکسین‌های باکتری‌های می‌توان به لیپولی‌س کازاپلاست (LPS) وجود در باکتری‌های گرم منفی‌شان نمود (۵).

۲- اکزوتکسین‌ها: به طور عمدی از جنس پروتئین و گاهی اوقات قطع‌های پی بین‌داده می‌شود و از طریق غشاء باکتری‌ها و سبب آسیب به سلول‌های می‌گردد (۶).

اسامی‌پان‌ها معمولاً به محل ارگزانی آنها بر می‌گردد، برای مثال اندوتکسین (ارگزانی بر روی سلول‌های آزاد می‌گردد) و LPS (ارگزانی بر روی سلول‌های غشاء) که به طور هم‌زمان باکتری بر روی دانه‌گردن دسته‌ای از سلول‌های دندان می‌گردد.

ر (۷) و

اکنون اختصاصیت مربوط به حضور گیرنده‌های غشاء اختصاصی یک سرمی با روضه دیجست سلول است.

این گیرنده‌ها ممکن است از جنس‌های

۷ Endotoxins
۴ Lipopolysaccharide
۵ Exotoxins

http://bpums.ac.ir
می‌توان به توكسین‌های دیپانگای نوسورگاکتوسیکین (STX)، ساکی‌توكسین (Neosurugatoxin) و سایت‌توكسین‌ها اشاره نمود (16). ترتوتوکسین (TTX) این توكسین عصبی (نورتوتوکسین) با فرمول شیمیایی کل مولکول هتروسیکلیک است که باعث تغییر در سیستم هتروسیکلیک و سیستم‌های دیگر می‌شود (16). این سیستم به طور انتخابی کانادی‌های سدیم را در سلول‌های عصبی و غضلات من می‌کند (17).

درایش شش‌گروه هیدروکسیل، یک‌گروه گوانیدنوم و یک‌گروه بیرپیدین با سبب‌سازی حلقه مصلح‌پذیر است (شکل 1). با وجود اینکه در حال حاضر این توكسین با موافقت در آزمایشگاه تنظیم شده‌است (آماری، سندرم می‌شود آماده مسیر تنظیم در ارگانیسم‌ها به طور pH کامل شناخته شده نیست. این توكسین در فیزیولوژیکی دارای بار مثبت می‌باشد. از ویژگی‌های فیزیکی تداوم این سم در هنگام خالص بودن می‌توان به پودر سفید و پیروی این مشخصات و محلول در آب این سیستم می‌توان است که این سم در حالت سفید، به طور می‌توان یک درصد از تعداد گونه‌های باکتریایی (18).

شکل 1: ساختار شیمیایی ترتوتوکسین، سم عصبی تولید شده توسط چندین گونه باکتریایی (18).

http://bpums.ac.ir
در مطالعات مختلف، حضور باکتری‌های ترودوتکسین در رسوایی‌های به ابتلای مصرف‌گران در سال 1990 است (15). در این رسوایی‌ها باکتری‌های ترودوتکسین در سال 1990 به طور رایگان داده شده است (16). نوگاچی (Noguchi) در سال 1990 اولین بار این نوع باکتری ترودوتکسین را گزارش داده است. به عنوان سیستم‌های بهبود یافته در جدول‌های ترسیبی ترودوتکسین در هزاره جدید ترودوتکسین در میان ترودوتکسین در سال 1990 به طور رایگان داده شده است (15). در این رسوایی‌ها باکتری‌های ترودوتکسین در سال 1990 به طور رایگان داده شده است (16). نوگاچی (Noguchi) در سال 1990 اولین بار این نوع باکتری ترودوتکسین را گزارش داده است. به عنوان سیستم‌های بهبود یافته در جدول‌های ترسیبی ترودوتکسین در هزاره جدید ترودوتکسین در میان

در سال‌های اخیر توزیع کل‌ترهای
گروه‌های مختلف از موجودات به ابتلای مصرف‌گران
JT

http://bpums.ac.ir
در جدول ۱ به طور خلاصه باکتری‌های تولید کننده TTX که از منابع مختلف منطقه آب و روستاهای دریا و بیابان‌های جنگلی در ایران، از جمله مناطق کوهستانی، دریاچه‌ها و نمک‌زارها، توصیف شده‌اند، آمده است.

<table>
<thead>
<tr>
<th>کشور</th>
<th>سال</th>
<th>ارگانیسم</th>
<th>شاخه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vibrio sp.</td>
<td>Vibriaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Gibbula umbilicalis)</td>
<td>Vibrio</td>
</tr>
<tr>
<td>پرتغال</td>
<td>2011</td>
<td>(Monodonta turbinata)</td>
<td>Vibrio splendidus</td>
</tr>
<tr>
<td>پرتغال</td>
<td>2011</td>
<td>(Gibbula umbilicalis)</td>
<td>Vibrio galleccius</td>
</tr>
<tr>
<td>پرتغال</td>
<td>2011</td>
<td>(Gibbula umbilicalis)</td>
<td>Vibrio gigantis</td>
</tr>
<tr>
<td>پرتغال</td>
<td>2011</td>
<td>(Gibbula umbilicalis)</td>
<td>Vibrio tasmaniensis</td>
</tr>
<tr>
<td>پرتغال</td>
<td>2011</td>
<td>(Gibbula umbilicalis)</td>
<td>Vibrio tapetis</td>
</tr>
<tr>
<td>پرتغال</td>
<td>2011</td>
<td>(Monodonta turbinata)</td>
<td>Vibrio cyclitrophicus</td>
</tr>
<tr>
<td>زاین</td>
<td>1987</td>
<td>شکم یا</td>
<td>Vibrio algoinolyticus</td>
</tr>
<tr>
<td>نیویا</td>
<td>1995</td>
<td>(Niotha clathrata)</td>
<td>Vibrio parahaemolyticus</td>
</tr>
<tr>
<td>پرتغال</td>
<td>2011</td>
<td>(Monodonta turbinata)</td>
<td>Xanthid</td>
</tr>
<tr>
<td>امریکا</td>
<td>2009</td>
<td>شکم یا</td>
<td>Vibrio harvey</td>
</tr>
<tr>
<td>پرتغال</td>
<td>2011</td>
<td>(Monodonta turbinata)</td>
<td>Photobacterium</td>
</tr>
<tr>
<td>زاین</td>
<td>1990</td>
<td>شکم یا</td>
<td>II</td>
</tr>
<tr>
<td>زاین</td>
<td>1990</td>
<td>(Niotha clathrata)</td>
<td>Listonella plaga sp. nov.</td>
</tr>
<tr>
<td>زاین</td>
<td>1987</td>
<td>(Fugu paailonotus)</td>
<td>Pseudomonas sp.</td>
</tr>
<tr>
<td>زاین</td>
<td>1995</td>
<td>(Niotha clathrata)</td>
<td>Serratia marcescens</td>
</tr>
<tr>
<td>زاین</td>
<td>1985</td>
<td>(Fugu paailonotus)</td>
<td>Enterobacteriaceae</td>
</tr>
<tr>
<td>زاین</td>
<td>2005</td>
<td>شکم یا</td>
<td>Chelonodon patoca</td>
</tr>
<tr>
<td>زاین</td>
<td>2005</td>
<td>(Niotha clathrata)</td>
<td>Chelonodon patoca</td>
</tr>
<tr>
<td>زاین</td>
<td>2011</td>
<td>(Takifugu niphobles)</td>
<td>Raoultella terrigena</td>
</tr>
</tbody>
</table>

۱.۴۰۰۳

http://bpums.ac.ir
<table>
<thead>
<tr>
<th>شاخ</th>
<th>ارگانیسم</th>
<th>منبع جداسازی</th>
<th>سال</th>
<th>فرنس</th>
<th>کشور</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacter cloacae</td>
<td>(Yonceichthys criniger)</td>
<td>دامه سی (یوزنگ)</td>
<td>2015</td>
<td>17</td>
<td>چین</td>
</tr>
<tr>
<td>Rahnella aquatilis</td>
<td>(Yonceichthys criniger)</td>
<td>دامه سی (یوزنگ)</td>
<td>2015</td>
<td>17</td>
<td>چین</td>
</tr>
<tr>
<td>Aeromonas sp.</td>
<td>رسونت در دامه</td>
<td>1990</td>
<td>13</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Aeromonas sp.</td>
<td>نیویا (Niotha clathrata)</td>
<td>1995</td>
<td>25</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Aeromonas sp.</td>
<td>(Nassarius semiplicatus)</td>
<td>2015</td>
<td>17</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Aeromonas sp.</td>
<td>(Takifugu obscure)</td>
<td>2010</td>
<td>33</td>
<td>منسوب</td>
<td></td>
</tr>
<tr>
<td>Shewanella sp.</td>
<td>(Nassarius semiplicatus)</td>
<td>2008</td>
<td>23</td>
<td>چین</td>
<td></td>
</tr>
<tr>
<td>Shewanella sp.</td>
<td>(Monodonta turbinata)</td>
<td>2001</td>
<td>12</td>
<td>پرتنگ</td>
<td></td>
</tr>
<tr>
<td>Shewanella pacifica</td>
<td>(Pseudocaligus fugu)</td>
<td>2007</td>
<td>24</td>
<td>پرتنگ</td>
<td></td>
</tr>
<tr>
<td>Shewanella surugensis</td>
<td>(Takifugu niphobles)</td>
<td>1999</td>
<td>35</td>
<td>باکتک ماهی</td>
<td></td>
</tr>
<tr>
<td>Shewanella patrefaciens</td>
<td>(Lagocephalus lunaris)</td>
<td>2012</td>
<td>36</td>
<td>نیویا</td>
<td></td>
</tr>
<tr>
<td>Shewanella algua sp. nov.</td>
<td>(Jania sp.)</td>
<td>1990</td>
<td>14</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Oceanospirillaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marinomonas</td>
<td>(Nassarius semiplicatus)</td>
<td>2008</td>
<td>23</td>
<td>چین</td>
<td></td>
</tr>
<tr>
<td>Plesiomonaceae</td>
<td>(Niotha clathrata)</td>
<td>1995</td>
<td>25</td>
<td>نیویا</td>
<td></td>
</tr>
<tr>
<td>Plesiomonas sp.</td>
<td>دامه سی (یوزنگ)</td>
<td>1990</td>
<td>13</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Alteromonadaceae</td>
<td>رسونت در دامه</td>
<td>1990</td>
<td>13</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Alteromonas sp.</td>
<td>(Octopus maculosus)</td>
<td>1989</td>
<td>37</td>
<td>پلیتوب</td>
<td></td>
</tr>
<tr>
<td>Alteromonas sp.</td>
<td>باکتک ماهی</td>
<td>1990</td>
<td>14</td>
<td>باکتک ماهی</td>
<td></td>
</tr>
<tr>
<td>Alteromonas tetraodonis sp. nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moraxellaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter sp.</td>
<td>رسونت در دامه</td>
<td>1990</td>
<td>13</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Caulobacteraceae</td>
<td>رسونت در دامه</td>
<td>1993</td>
<td>21</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Caulobacter sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasteurellaceae</td>
<td>رسونت در دامه</td>
<td>1995</td>
<td>25</td>
<td>نیویا</td>
<td></td>
</tr>
<tr>
<td>Pasteurella</td>
<td>(Niotha clathrata)</td>
<td>1990</td>
<td>13</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Moraxellaceae</td>
<td>رسونت در دامه</td>
<td>1990</td>
<td>13</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Alcaligenaceae</td>
<td>رسونت در دامه</td>
<td>1990</td>
<td>13</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Alcaligenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudoalteromonadaceae</td>
<td>سیالی از روی</td>
<td>2011</td>
<td>12</td>
<td>پرتنگ</td>
<td></td>
</tr>
<tr>
<td>Pseudoalteromonas sp.</td>
<td>(Meoma ventricosa)</td>
<td>2000</td>
<td>38</td>
<td>هنده</td>
<td></td>
</tr>
<tr>
<td>Pseudoalteromonas sp.</td>
<td>(Meoma ventricosa)</td>
<td>2001</td>
<td>12</td>
<td>پرتنگ</td>
<td></td>
</tr>
<tr>
<td>Pseudoalteromonas sp.</td>
<td>(Pseudocaligus fugu)</td>
<td>2007</td>
<td>32</td>
<td>پرتنگ</td>
<td></td>
</tr>
<tr>
<td>Roseobacter sp.</td>
<td>(Takifuguiniphobles ovaryof)</td>
<td>2004</td>
<td>39</td>
<td>هنده</td>
<td></td>
</tr>
<tr>
<td>Microbacteriaceae</td>
<td>رسونت در دامه</td>
<td>1993</td>
<td>21</td>
<td>نیویا</td>
<td></td>
</tr>
<tr>
<td>Microbacterium arabinogalactanolyticum</td>
<td>رسونت در دامه</td>
<td>1990</td>
<td>13</td>
<td>زاین</td>
<td></td>
</tr>
<tr>
<td>Micrococccae</td>
<td>رسونت در دامه</td>
<td>1990</td>
<td>13</td>
<td>زاین</td>
<td></td>
</tr>
</tbody>
</table>

http://bpums.ac.ir
### مکانیسم فعالیت گردش‌دهنده‌های غشایی هستنده

پروتئین‌های بنگاه‌دانه‌های غشایی هستنده و گردش‌دهنده‌های غشایی هستنده (VGSCs) که از یک زیر واحد آلفا (α2 میلی‌نپتون) و یک یا چند زیر واحد کمکی (β) تشکیل شده‌اند (77). زیر واحد آلفا برای اندازه‌گیری و تکثیر فعالیت خطای بیولوفیزیکی کالانی، کابلی است و جایگزین دیلر انتخابی یون می‌باشد (46). زیر واحد‌هایی با می‌تواند صفات وابسته به ولتاژ و حرکت (کیتین) کالانی احا تغییر دهد. از طرفی در محیط سازی‌ها و برعکس منش و مولکول‌های جنبش‌های سولویان، سیتوبی‌سکس خارج سولویان و استکل داخل سولویان نقش ایفا می‌نماید (46).

9 ایزوفرم از زیر واحد‌های در پستانداران شناسایی شده است. این گروه در این سلول‌های کبدی‌گداری می‌شوند و 9 زیر گروه VGSC را ایجاد می‌کنند. (Nav1.1–Nav1.9.

### نجفی و همکاران

#### جریان بودن‌های سدیم به درون سلول‌های عصب‌گاهی استری

جریان بودن‌های سدیم به درون سلول‌های عصب‌گاهی آزمایشگاهی در پستانداران شناسایی شده است. این ایزوفرم به درون سلول‌های عصب‌گاهی با تکثیر فعالیت خطای بیولوفیزیکی کالانی، کابلی است و جایگزین دیلر انتخابی یون می‌باشد (46).

#### 매파

گردش‌دهنده‌های غشایی هستنده (VGSCs) که از یک زیر واحد آلفا (α2 میلی‌نپتون) و یک یا چند زیر واحد کمکی (β) تشکیل شده‌اند (77). زیر واحد آلفا برای اندازه‌گیری و تکثیر فعالیت خطای بیولوفیزیکی کالانی، کابلی است و جایگزین دیلر انتخابی یون می‌باشد (46). زیر واحد‌هایی با می‌تواند صفات وابسته به ولتاژ و حرکت (کیتین) کالانی احا تغییر دهد. از طرفی در محیط سازی‌ها و برعکس منش و مولکول‌های جنبش‌های سولویان، سیتوبی‌سکس خارج سولویان و استکل داخل سولویان نقش ایفا می‌نماید (46).

http://bpums.ac.ir
شاخص‌های شده است که به عنوان یک پروتئین مربوط عمل می‌کند و VGSC را کم نمی‌کند.

شکل 2 نمایی شماتیکی از زیرواحدهای آلفا می‌باشد. این زیرواحدها پی‌لینزدهی یا پزی‌مستک که هم‌کی در مجموع از نظر ساختار کلی مشترک هستند. این ساختار دارای 4 دامنه هومولوگ (DI-DIV) می‌باشد. هر دامنه
حاوی 6 قطعه آلفا- ماریپی (Transmembrane) است که توسط لوب‌های خارج سلولی و داخل سلولی به یکدیگر متعلق می‌شوند (46).

تولید اختصاصی اسید آمین تنها واحدها، دیواره‌های کاتالیز بلو، حسگر، و هلز، دریچه گیر‌غلاف و گیرگی نارنجی‌زای اسپرایسون پروتئین را تشکیل می‌دهند (49). همچنین زیر واحدها جایی جایی اختصاص برای بررسی موضوعی، ضد آریتیمی (نامظمه ضربان قلبی) و

داروهای ضد صرع (50) می‌باشد. از طرفی، جایگاه
اصولی نیز برای گروه‌های مختلف نورتوکسین‌سی درد که در توانایی طور قبل توجیه عملکرد کالائی را تغییر
دهنده (51).

تترودوتوکسین به جایگاه 1 گیرنده نورتوکسین در
زیرواحده‌های خاکستری VGSC (درون هشتم پروتئین)
$('TTX') می‌شود و از انجایی که
یک منافع پروتئین کالائی، از ورود پون‌سید
سیدم خلقت گردید (شکل 3). این اتصال مانع از
انضمام پانتسیالی عمیق شده و در نتیجه عملکرد گاهی
و سلول عمیق فلج می‌شود (46). تترودوتوکسین در
مسیر کردن کالائی پون سیدم و در نتیجه جریان
پون‌سیدم کاملاً اختصاصی عمل می‌کند. در حالی
که تأثیری بر روی پون‌های پتاسیم ندارد (12).

![دیاگرام تورودوتوکسین](http://bpums.ac.ir)
به طور اختصاصی، VGSCs به تروتوکسین در برخی از انواع سلول‌های موجود در سیستم عصبی مانند آنتوسیست بیان می‌شوند.

علاوه بر این، به نظر می‌رسد که VGSCs نقص مهمی در عملکرد و ناحیه مانند این سلول‌ها ایفا نمایند.

بنابراین، مطالعات بالینی که در آنها TTX شیبه تجدید می‌کند و با عوامل VGSCs به سیستم عصبی مرتبط می‌شود، باید به دقت از نظر تغییر در عملکرد عصبی مورد بررسی قرار گیرند (36).

امروزه، VGSCs ها به دلیل پاتولوژی درمان‌شان، بسیار مورد توجه قرار می‌گیرند. جهش در زن‌های کی کندنگ (Channelopathies) (نام آم آسس کانالی) به VGSCs عنوان می‌شود. مانند ارثی مانند بیماری‌های فقی، ماهیچه اسکلتی، فلج و اعصاب محیطی شناسایی شده‌اند. علاوه بر این، مشخص شده است که تغییر در VGSCs بیان زن‌های غیر جهش یافته می‌تواند در درمان برخی از اختلالات مانند در و بیماری مالیتی اسکلروز (Multiple sclerosis MS) نقش داشته باشند (44).

همیشه تروتوکسین در پزشکی اگرچه تروتوکسین یک سم مهک و کشنه است، به تازگی مطالعات بیماری بر روی اثرات بالقوه های VGSCs در تروتوکسین، که در پاتوپاتولوژی شده است، از نظر سینیتوکین و صفات وابسته به ولتاژ متغیر بوده TTX و در محیط سازی بافتشان و حساسیت نسبت به TTX متفاوت می‌باشد. غلظت‌های نانومولار از Nav1.7 گروه‌های Nav 1.4 تا Nav 1.7 و Nav1.4 و Nav1.7 که به است قرار می‌گیرد (TTX) (را بلک می‌کند. در حالي که غلظت‌های بسیار بالاتر (میکرومولار) از و برای بلک ترتیب تروتوکسین (TTX) مورد نیازVGSCs (Nav1.9 است (35).

بنابراین، در پاتوپاتولوژی تروتوکسین، اثرات فیزیولوژیکی می‌باشد که تحقیک‌های مختلف بیشتری به ایزوفرم‌های بیان شده در سلول‌های انسان، متفاوت VGSCs می‌باشد (46).

نقطه‌های عمیکری VGSCs که توسط سلول‌های عصبی بیان می‌شوند، به بیماری مشخص شده است همچنین VGSCs (تشکیل و انتقال پاتولوژی عصبی) در سلول‌های غیر عصبی موجود در میان MS (عصبی و خارج از سیستم عصبی موجود دارند. با این وجود، نقش آنها در اعمال سلول‌های VGSCs به طور کامل مشخص نشده است (35).

http://bpums.ac.ir
درمانی اعتیاد به هروئین است اما به خودی خود می‌توانند اعتیاد‌آور باشند. اگر می‌شود که نارضایتی نیکوکوئین قوی است که کنترل سطح وابستگی و در فاز سوم آزمایش‌های بالینی خود قرار دارد (55).

**N stosurugaktosin (NS TX) (Neosurugactoxin)**

این سم با فرمول شیمیایی C_{30}H_{34}N_{14}O_{15}Br.H_{2}O یک ترکیب چند حلقه‌ای است (شکل ۲) که برای اولین بار در سال ۱۹۸۴ توسط تاکو کوشوج و همکاران از یک بکری تاکوژو (Takuo Kosuge) کورینه فرم موجود در غدد گوارشی نوعی جلزان دریایی شکم با (بابلولیا ژاپونیکا) در راین جداسازی شد (56).

![شکل ۲: ساختار شیمیایی نستوسورورگاکتئن‌سین سم نستویش شده توسط یک بکری کورینه فرم دریایی](http://bpums.ac.ir)

**Hayashi هیاوشی** و همکاران در سال ۱۹۸۴ نشان دادند که این ترکیب می‌تواند باعث ایجاد اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کورینه موجود در مغز موش و نیز ایلومن خونمی‌های ژنی‌های داره‌ی بروز آن‌ها در داخل اتاق‌های دیجی‌اتس بکری کور

**WEX** در این‌جا که دو کیمیایی این سم را از این سم می‌تواند به عنوان یک مسکن بسیار قوی عمل کند. این سم در حال آزمایش یک محصول به نام ترتووردین است که منبع از علائم ترک هروئین می‌شود. در حال حاضر منابع رایج ترین

[17] Babylonia japonica

[16] Tetradvin

http://bpums.ac.ir
پالی توكسین (Palytoxin) (PITX) 

این توكسین با فرمول شیمیایی C_{129}H_{223}N_{3}O_{54} برای اولین بار در سال ۱۹۷۱ از یک مرجان (Zoanthid) به نام پالی توكسین (Palythoa toxica) و جداسازی گردید. 

یک مولکول پلی کتائید پنچجه است که پالی توكسین (Palytoxin) دارای ۱۱۵ اتم کربن به هم پیوسته و ۶۴ استروستر می‌باشد (شکل ۵). یکی از سمی‌ترین و از نظر شیمیایی پیچیدن توكسین درباحی غیر پروتئینی است که عمدتاً در مرجان‌ها و دینوفالاژها شناسایی شده است (۵۸). 

(PTX) (Palytoxin) 

بنابراین توكسین در سال ۲۰۰۰ توسط فرولوا (Frolova) و همکاران با بررسی نمونه‌های سمی پالی توكسین (Palytoxin) همکاران در سال ۲۰۰۹ در مطالعه دیگری که با هدف ارزیابی توده بیماری پالی توكسین (Palythoa caribaeorum) (Zoanthus pulchellus zoanthid) و پالی توكسین (Palythoa toxica) در گونه مرجانی (Palythoa caribaeorum) (Zoanthus pulchellus zoanthid) استفاده انجام گرفت، حضور پاسیلوس سرتون و ATP انتقال با یک مولکول انجام می‌شود (۴۱). این پالی توكسین از استوتاباز (۶۰) از Brevibacterium و استوتاباز در آن موجودات دریایی تایید گردید (۵۸). 

[ DOI: 10.18869/acadpub.ismj.19.3.482 ]

http://bpums.ac.ir
وجود دارد و برای زیست‌پژوهی تمام سلول‌ها لازم می‌باشد (۶۲).

شکل ۷ مکانیسم عمل پالی‌تکسین، سمت چپ: عملکرد طبیعی پمپ سدیم، پتاسیم - ATPase. را در سلول نشان می‌دهد. این عمل شامل اندازه‌گیری جهت انتقال سدیم از داخل به خارج از سلول و وارد کردن ۲ پمپ سدیم به داخل سلول می‌باشد. سمت راست: انتقال یک مولکول پالی‌تکسین به بخش خارجی زیر واحد آلفا از پمپ سدیم، پتاسیم - ATPase. موجب تولید پمپ به یک کانال کاتیونی می‌گردد. در نتیجه پونه‌های سدیم وارد سلول شده و پونه‌های پتاسیم از داخل سلول به خارج می‌نشینند (۶۱).

سیبیت پالی‌تکسین به دلیل میل اتصال به سلول‌های آن به بخش خارج سلولی زیر واحد آلفا پمپ سدیم- پتاسیم می‌باشد. این امر موجب تشکیل یک منفذ (کانال) کاتیونی نسبتاً غیرانتهایی در درون و یا نزدیک پمپ پروتئینی می‌گردد (۶۱ و ۶۲). پالی‌تکسین اولین ترکیب سمنی است که باعث تشکیل کانال می‌شود. این امر موجب شده که پونه‌های تک ظرفیتی مثبت مانند سدیم و پتاسیم در خلاف سیبیت غلفت آزادانه انتشار یابند و در نتیجه گرداگردانی بیونی سلول تخریب گردند (۶۱). در حالی که حدود ۱۰۰ پونه از طریق این کانال عبور داده می‌شود اما با حضور PTX در نهایت از میلیون‌ها پونه از کانال منتشر می‌شوند (۶۳) (شکل ۷).

تکسین‌های سیانوباخته‌ها

سیانو باخته‌ها (جلیقه‌ای سیر - آبی) اعضا معمول فیتوپلاست‌های آب‌های دریایی، لب شور و آب
مقاله نگارنده تولیدنی های باکتریایی دریا: یک مطالعه موری / 295

سیلندروسپرموسین یک سیتروکن آلکالودتی هیدروفیل است که از گونه‌های مختلف سیباکتریهای آب شیرین مانند سیباکتریوم، سیباکتریوم راکی بیورسکی، آمیزاکا ناناس، آفتابومونو اورالیسپوروم، اتآپا اس بی، و رافندریپس اس بی. ۳ یا چند ناحیه است. سیمون محرک سیباکتریهای آب شیرین مانند میکوپلی ساکارید (LPS) در پیش‌بازکننده‌ی بار دوباره سلولی باکتری‌ها می‌باشد (۸۹).

نحوه اثر تولیدنی های سیباکتریایی

نوروتونین‌ها

الف) آناتوکسین

این سبب یک فرمول شیمیایی آمینی است که به طور عمده بسیار سریع (VFDF) به آن واژه شانه‌ای است (شکل V). آناتوکسین اثر آن اولین بار در اواخر دهه ۱۹۶۰ از دریچه ساسکاچوان در کانادا گزارش شده و پس از آن در سال ۱۹۷۲ در سیباکتریهای آناتوکسین (S) مورد آگاهی قرار گرفت.

β) آناتوکسین

این سبب یک فرمول درون تون (in vivo) به وسیله گونه آناتوکسین اکوا و آناتوکسین اکوا سیباکتریهای سنتز می‌گردد. این تولیدنی و ساختن هسته‌های شیمیایی دیگر به آن با استفاده از استعداد تولید می‌گردد. این با بیش از ۵۰ درصد می‌تواند موجب تشکیل آنتوکسین می‌شود (۷۲).

دانلدرپرموپسین و آناتوکسین آنتوکسین (S) و سیلندروسپرموسین (۶۸) از لحاظ زنتیکی و بوشیمیایی مشخص شده‌اند (۶۴). این ترکیبات به طور عمده باعث آدی‌کسی‌های آشامی‌دهنده می‌شوند. با این وجود، حضور این آنتوکسین‌ها در آب‌های شیرین و نرم‌تن دریایی نشان‌یافته است (۶۷).

این سبب بر اساس آن‌که هدف به ۴‌خته‌ی طبقه‌بندی نوروتونین (میکوسین عصبی) هسته‌ی آنتوکسین (نادماهی کید) که عده‌ای روده‌کوچک (نوروم محرک) به سرگرد (۶۸). نوروتونین‌های سیباکتریایی به سه گروه آنتوکسین‌های هومو آنتوکسین a و آنتوکسین b، ساکسی‌توکسین‌ها و اسید آمینه‌ی BMAA و نوروتونین‌های L-β-آنت-Ν-انتقال BMAA (قسمتی می‌شوند. این میان آنتوکسین‌ها سیک‌نحو و محلول BMAA و مختصر سیباکتری‌یا هستند. در حالی که ساکسی‌توکسین‌ها توسط برخی از داینوفلانول‌ها دریایی نیز سنتر می‌شوند. برخلاف نوروتونین‌های که تولید می‌شود به قبل، تا گونه‌ها است، می‌تواند توسط نتیجه‌ی تمام گروه‌های سیباکتریهای موجود در آب شیرین، لب شور و محیط‌های دریایی تولید گردید (۶۹).

هپوپرومیسین‌ها به دوره‌ی میکروسپورسین (MCS) نورولین تقصیم می‌شوند. میکروسپورسین که هپتاییتی به دو تندوره‌ی سیباکتریهای سنتز است که به غلظت فراوان‌ترین سیباکتریهای تولیدی از توزیعی نمی‌تواند جهانی سیباکتریهای سیباکتریهای سیباکتریهای سیباکتریهای سیباکتریهای سیباکتریهای سیباکتریهای می‌شود. در حال حاضر بیش از ۶۸ واریانت Girs (۶۰). نورولین از یک اسید آمینه تشکیل شده است که تا دارای ۹ آنتوکسین طبیعی مختلف می‌باشد.

Cylindrospermopsis raciborskii
Umexazia natans
Aphanizomenon ovalisporum
Anabaena sp.
Raphidiopsis sp.
Very Fast Death Factor
Saskatchewan
Anabaena floa aquae

http://bpums.ac.ir
در شرایط عادی، استیل کولین به گیرنده‌های عصبی موجود در غشا نورون پس سیناپسی منصل می‌شود. این امر موجب تغییر ساختار فضایی در دامنه خارج سلولی گیرنده‌ای می‌شود که باز کننده منافذ کانال می‌باشد. این کانال به بی‌هدی سدیم و کلیسم اج زه می‌دهد تا به درون سلول‌های عصبی وارد شود. و...

عصبی مرکزی می‌باشد (72). تکمیل آناتوکسین a برای اتصال به این گیرنده‌ها حدود 20 برابر استیل کولین آناتوکسین a گونه سیتوبیکین موجود در سیستم

http://bpums.ac.ir
استفاده قرار می‌گیرد. امروزه تحقیقات بیشتر بر روی انواع و میکروبی‌های استیل کولون موسکارینی دارد (76). این انواع به‌طور کلی نیکوتینی را در محل انحل عصبی عضلانی تحت تأثیر قرار می‌دهد (75). این انواع به‌طور کلی نیکوتینی باد شده و موجب اثرات مشابه در سلل‌های میکروبی می‌گردد. با این تفاوت که این انواع به‌طور کلی به‌طور کلی کسب دارد و این سیستم عصبی به طور موقت باز می‌شود و پس از یک دوره زمانی، این تفاوت ناشی از عدم عمل میکروبی می‌گردد (57). اثر کشیده انواع a (86) و 87 نشان داده است که گروه دوز کشیده انواع a به موش، رنگ، پرندگان، سگ و گوساله موجب می‌گردد. اعمال دنباله‌ای شامل فاسکولاکسین عضلانی، کاهش حرکت، کلاپس، تنفس، نشان و تشنج می‌شود (71).

ا) هومو انوکسین (72)

این نورون‌های گروه فازی‌شکل رهاش استیل کولون از اعضا کولن‌زیک (هر سلول عصبی که توانایی ایجاد، تغییر و با آزادکردن استیل کولون را دارد) محیطی می‌گردد. این عمل از طریق باز شدن وانت درونی کاتالیزه کلسیم نوع L عصبی انجام می‌گردد (75).

b) هومو انوکسین (78)

این نورون‌های گروه فازی‌شکل رهاش استیل کولون از اعضا کولن‌زیک (هر سلول عصبی که توانایی ایجاد، تغییر و با آزادکردن استیل کولون را دارد) محیطی می‌گردد. این عمل از طریق باز شدن وانت درونی کاتالیزه کلسیم نوع L عصبی انجام می‌گردد (75).

http://bpums.ac.ir
صفات فیزیولوژیکی منفعتی از خود نشان می‌دهد. آنتانوسین a (8) متعلق به کلاس ارگانوفسفات بوده و از نروتوکسین‌ها می‌باشد و به عنوان یک مهار کننده برشکت‌ناب‌دریآم استیل کولین ابزار در سیناپس‌های عصبی عمل می‌کند (شکل 10) (77).

ساختار شیمیایی ساکسی تسکسین، سم عصبی تولید شده

پایان‌آکسون

شکل 11) ساختار شیمیایی ساکسی تسکسین، سم عصبی تولید شده

(8) ساکسی تسکسین

این توبسین‌ها ترادیورپورین‌یو کیفیت‌هایی دارند که به طور اولیه از نوعی ترکیب

C_{10}H_{15}N_{4}O_{4}

گونه آسکسی ساکسی تسکسین را می‌کند. STX به آن داده شد. ساختارشان نیز این توبسین‌ها از سبیتهای

+- سه پلهای 3 و 4- پروتئین‌های‌دیروپورین پروی می‌کند (شکل 11) (78).

27. Butter clam

28. Saxidomus giganteus

http://bpums.ac.ir
به طوری که ساکسی توکسین به صورت برگشت‌پذیر به جایگاه ۱ زیر واحد آلفا در کنال‌های سدیمی وابسته به ولتاژ متصل می‌گردد (شکل ۱۲). این توکسین به طور مستقیم به منافذ کانال پروتئینی متصل می‌شود، کانال باز سیستم عصبی می‌گردد (۷۸ و ۸۰).

شکل ۱۲ محل اتصال ساکسی توکسین به جایگاه ۱ زیر واحد آلفا در کنال‌های سدیمی وابسته به ولتاژ

شکل ۱۳ مکان‌های اثر ساکسی توکسین. بلوک کردن کنال‌های سدیمی و کلسیمی در سلول‌های عصبی (۱۰).
نتیجه‌گیری چنین بوده‌است که این امر باعث آسیب رسانی به هموستات سلولی می‌گردد (28).

(BMAA) اسید آمیوتوکسین (BMAA) این تکسین با فرمول شیمیایی C9H10N2O4، یک اسید آمیی نورونوتوکسین است که توسط سیانوپاتّری‌ها تولید می‌گردد. این تکسین مشتقی از اسید آمیوتوکسین است که یک گروه متفاوت آمیدو در نزدیکه جانبی آن قرار گرفته است (شکل 14).

(KTX) یک کالکی تکسین (Kalkitoxin) که این تکسین یک تاثیرین لیپوپتید است که اولین بار در سال 1999 توسط یک سیانوپاتّری در واقع بام لیپکیا (Lyngbya majuscule) مجزا شد.

(AMPA) گلپات‌ی آمیپا (AMPA) گلپات‌ی گیرنده‌های یک لیپپروکسی (5-متیل-3-ایروپاکسازول پروپیونیک) اسید (کاینایت) و (kainite) NMDA) وامپا (وسیله های تکسینی کاینایت) اسید) ولی به کلسیم، کاینایت (N) می‌باشد. با توجه به این امر، فناوری درون سلولی کلسیم در سلول‌های عصبی افزایش می‌یابد و فعالیت عصبی به طور بی‌رویه افتاده می‌گردد (68).

BMAA در پستانداران به عنوان آکوتیستر گلپات‌ی در گیرنده‌های AMPA (آمپا-3) و NMDA (نی‌ام‌دی‌ا) عمل می‌نماید. در نتیجه این امر، قابلیت درون سلولی کلسیم در سلول‌های عصبی افزایش می‌یابد و فعالیت عصبی به طور بی‌رویه افتاده می‌گردد (68).

http://bpums.ac.ir
گذشت از اثرات سطحی به نظر می‌رسد که موجب افزایش بروز رشدی آکسیون در سلول‌های عصبی نابلغ در حال تولید، و استرسی با وجود سدیم، آقالیده گرندی NMDA، کالسیومیل کلسیم وابسته به وقوع و مسر کالسولین کتنا می‌گردد (91).

**هیاتوکسین‌ها**

الف) میکروستین- LR

میکروستین‌ها با فرمول شیمیایی C_{48}H_{71}N_{16}O_{12} هنگام‌های حلقوی می‌باشند که در آب بیس‌پایدار بوده و در برای هیدرولیز و اکسیداسیون مقاوم می‌باشند. نیمه عمر این مس در pH 1 و دمای 40 درجه سلسیوس، معادل 3 هفته است (92).

هفت اسید آمینه‌ای که در ساختار یک میکروستین قرار دارند شامل یک اسید آمینه β منحصر به فرد L-آلیسین، (ADDCA) و D-آلیسین، (ADDBC) می‌باشد. اغلب بر این، میکروستین‌ها با یک واحد متغیر نیز هستند که باعث تمایز بین ویژگی‌های مختلف میکروستین‌ها می‌شود. این عناصر متغیر هموپتیک استعداد آمینه آنتی‌کارکینومیک و لیپوزوم‌ها است اند. همچنین در L-آلیسین به طور کلی یافته حداقل نفوذ غشاء سلول‌های مهره‌داران می‌باشند. با این حال، برای نفوذ نیازمند جذب از طریق استخوان استهداف صفرای موجود در سلول‌های کبدی و سلول‌های پوشاگان روده کورک می‌باشد. به همین دلیل، سمت این سیاست‌کسین‌نتها به اندازه‌ای محدود می‌گردد که

(2) آنتی‌کارکین (ATX) (Antillatoxin) این تکسین با فرمول شیمیایی C_{28}H_{55}N_{3}O_{6} و نوروتولاتون لیپوشیتی قوی غیرعملی است که توسط یک سیاست‌کسین دریایی به نام Lemnisci مجدسکای تولید می‌گردد (شکل 17).

با استفاده از روشهای مشخص و گردیده که این سم حاوی یک تری پتید به نام غولپسین- N- یک هیدروکسی-کربوکسیلیک اسید و یک diene (t-9 هیپنت-8-هیپنت-8(8 دین) هست. این سم 5 اسکلت پتیدی حلقوی می‌باشد (88). شکل 17: ساختار شیمیایی آنتی‌کارکین (ATX) (Antillatoxin) سم غولپسین تولید شده توسط سیاست‌کسین Lemnisci مجدسکای (87).

زیرواده آلفا گانال‌ها سرده‌ای است که به ولتاژ را ATX می‌تواند (89). این آمر را موجب افزایش ورود سدیم به داخل سلول دیالیزاسیون سلولی به فعالیت NMDA گیرنده (API) می‌کند. این اثرات در موادی که نوروتولاتون هستند به شکل (80) یک گروه سلول‌های غولپسین را از طریق تغییر می‌کنند. تا کار را در ATX که در ویژگی است در ولتاژ را باید نواحی آن اجرا می‌دهد. با یافته به مطالعه قابلی که در مورد مکانیسم فعالیت سایر سم‌های سیاست‌کسین ذکر گردید، قابل قبول به نظر می‌رسد که این استفاده از NMDA گیرنده ATX نموده می‌باشد در مرحله اولیه بروز در برای تجزیه شوند (90).

http://bpums.ac.ir
با وجود مکانیسم یاد شده، به تازگی مشخص شده است که میکروسیستین هن تناها به مهار مستقیم فعالیت پروتئین فستاتاز نوع 2A، تعادل کند فعالیت آن آزمی از ماه تنظیم کننده بیان آن نیز می‌باشد. به همین دلیل به نظر مدرن می‌کاننده مشتم میکروسیستین‌ها پیچیده از انتظار آن می‌رفته باشد.

القای برخی از مکانیسم‌های سلولی- مولکولی به نظر می‌رسد که وابسته به زمان و غلظت میکروسیستین و در بستر مورد مربوط به تشکیل ROS 7 باشد. این سطح در سیستم سلولی باعث استرس اکسیداتیو، التهاب در تهدید می‌کند مکان‌های اکسیداتیو القا شده توسط میکروسیستین-LR و در نهایت آپوپتوز با سلولی و نیز سمتی می‌گردد. طرفی میکروسیستین می‌تواند نواحی چندین تغییر در عناصر اسکلت سلولی مانند روزشته‌ها، رشد‌ها حد و استرس میکروسیستین باشد. این امر منجر به تغییر در معمای اسکلت سلولی و زیست‌پدیده سلول می‌شود. همچنین نشانه‌هایی می‌بر نشان داد خشکال سلول‌های تانور در سیستم سلولی 7 و آپوپتوز ایجاد شده توسط میکروسیستین- LR وجود دارد. آنالوگ‌های مختلف این تکنیک حاصل در نهایت آپوپتوز‌ها، در مبارزه با ساختار سلولی به طرفی درونی سلولی باید بیشتر با سمت PP2A و PP1 و توانایی ایجاد استرس اکسیداتیو را اغلت کنند (97).

(Nodularin) نودولارین
این هیاتونکسین با فرمول شیمیایی

C₄₁H₆₅N₉O₁₀

کپ پتیباند حلقی غیر روی‌سوزی است که حاوی جنده اسید آمینه غیر پروتئینیک غیر معول مانند مانند (94).

شکل 17 ساختار شیمیایی میکروسیستین-LR هیاتونکسین تولید شده توسط سیستمهای میکروسیستین- LR، فعالیت آنزیمی پروتئین فستاتاز نوع 1 و نوع 2A (PP2A و PP1) را در سیتوپلاسم سلول‌های کبدی مهار می‌کنند. این امر منجر به توالید فسفوتراژینی بروتئین‌ها در سلول‌های کبدی می‌گردد. به‌همان‌طور که مکان‌های-LR و فستاتاز‌ها با تشکیل یک پوند کووالانسی بین گروه‌های مینلک میکروسیستین- LR و وابستگی در زیر واحد کاتالیتیک سوپرپروتئین فستاتاز (PPP) خاک‌انداز سرین / تروپین‌های مخصوص فستاتاز، مانند PP2A و PP1 به طور مستقیم به مرکز کاتالیزور آنزیم‌های PPP منفعل می‌شود، به طور کامل از دسترسی سوپرتریا به جایگاه فعال آنزیم جلوگیری می‌نماید. در نتیجه فعالیت آنزیم پروتئین فستاتاز مهار می‌شود و پروتئین‌های فسفوریک بیشتر سلول‌های کبدی را تک می‌کنند. این روش با سیستم سیستم کبدی میکروسیستین-LR می‌باشد (94).

http://bpums.ac.ir
RNA و به صورت کووالنت ساختار DNA و یا تغییر می‌دهد.

این تکنسین‌ها دارای یک بیماری مرطوب در جزیره پالم کونیزولند، استرالیا کشف گردید. شیوع این بیماری مرطوب به شکوفایی (بلوم) یک گونه سیلندرورمورپیس راکی پروسکی در مناطق تأمین کندن آب آشامیدنی بود (89).

شکل ۱۸ ساختار شیمیایی سیلندرورمورپیس آکالونید (CYN).

نودولارین توسط یک گونه پلانکتونی سیلندرورمورپیس به نام Nodularia spumigena (CYN) و نیز توسط گونه کفیدی سیلندرورمورپیس Nodularia PCC7804 تولید می‌گردد (96). نودولارین نیز مانند میکروسیستی‌ها قادر به مهار آزمیت پروتئین سفالتای ۱ و ۲ و نیز امکان فسفرولیزوس پروتئین، کلاپ سلولی و خونریزی شدن کبد می‌باشد.

شکل ۱۹ ساختار شیمیایی سیلندرورمورپیس آکالونید (CYN).
توکسین‌هایی در یکی از گروه‌های نوروتوكسین، هپاتوتوکسین و سیتوتوکسین قرار دارند. این توكسین‌ها از طریق انسداد کانال‌های سدیمی در سلول‌های عصبی، آکنینست گیرنده‌های استیل کولین، مهار بی‌پری غشایی، مهار فعالیت آنزیمی پروپتین فسفاتازهای نوع 1 و 2 و مهار سرتوکسین نقش عملکردی خود را ایفا می‌نمایند. شواهدی که اگاهی از ساختار شیمیایی و مکانیسم عمل این توكسین‌ها می‌تواند ابراز می‌نماید در طریقی داروهای جدید، درمان بیماری‌ها و نیز مبارزه بی‌بیماری‌زای آنها باشد.

### سیاست و قدردانی
نویسنده‌گان این مقاله از تمام پژوهشگرانی که در سرتسار جهان و کشور عصرمان نتایج مطالعه‌شان به ارائه این مقاله منجر گردیده و به دلیل محدودیت‌های مقاله امکان استفاده به تمامی آنها وجود نداشته است کمال امتنان را دارند.

نتایج گیری
توکسین‌های باکتریایی دارای ساختارهای شیمیایی و عملکردی زیستی متنوعی می‌باشند. بیشتر این ساعت، سلول‌های کبی در لوبول کبدی تخشریب می‌شوند (100).

فرایند مهار سنتز پروتوکسین توسط CYN غیر قابل برگشت می‌باشد؛ اما مکان‌های قطعی ارگان‌دزی این سیتوتوکسین‌ها نمی‌باشد. فراسیو (Froschio) و همکاران نیپن دکه K و همکاران نیپن دکه K CYN حداصل دارای دو مکان‌های فعالیت جداگانه می‌باشد: یکی مهار سنتز پروتوکسین و دیگری روشی نامشخص که باعث مرگ سلولی می‌شود. زیرا مشخص شده است که سلول‌ها می‌توانند برای مدت طولانی (تا 20 ساعت) در حالی که درصد سنتز پروتوکسین مهار شده، زندگی باقی بمانند (110).

با توجه به ساختار CYN (شامل گروه‌های سولفات، گوانیدین و اوراسیل) گفته می‌شود که این توكسین می‌تواند با RNA و DNA قرار دهد. یافته‌های شوو (Shaw) و همکاران نشان دهنده اتماتی کوالانسي (بی‌شیمیایی) CYN DNA با DNA در موس بود (102) و از طرف دیگر نقش نیز ایبتای شده است (103).

### References:


http://bpums.ac.ir

http://bpums.ac.ir
77.Mahmood NA, Carmichael WW. Anatoxina(s), an anticholinesterase from the

http://bpums.ac.ir
84.Dunlop RA, Cox PA, Banack SA, et al. The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation. PLOS One 2013; 8: e75376.
89.Cao Z, Gerwick WH, Murray TF. Antillatoxin is a sodium channel activator that displays unique efficacy in heterologously expressed rNav1.2, rNav1.4 and rNav1.5 alpha subunits. BMC Neurosci 2010; 11: 154.
90.Berman FW, Gerwick WH, Murray TF. Antillatoxin and kalkitoxin, ichthyotoxins from the tropical cyanobacterium Lyngbya majuscula, induce distinct temporal patterns of NMDA receptor-mediated neurotoxicity. Toxicon 1999; 37: 1645-8.

http://bpums.ac.ir
cylindrospermopsin with the eukaryotic protein synthesis system. Toxicon 2008; 51, 191-8.


http://bpums.ac.ir
Review Article

The most important marine bacterial toxins; a review

A. Najafi 1*, I. Nabipour 1

1 The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran

(Received 30 May, 2016 Accepted 20 Jun, 2016)

Abstract

Background: Bacterial toxins are toxic compounds which are produced in order to present microbial pathogenicity or to combat with the host immune system response. There is a cumulating evidence indicating bacterial origin for marine toxins such as tetrodotoxin, palytoxin, neosurugatoxin, etc. The most important marine toxins produced by different marine bacteria, their origin, structure and mechanisms of action were evaluated in a systematic review.

Materials & Methods: Marine bacteria, marine bacterial toxins, and their mechanisms of action and structure were keywords for a comprehensive search in online databases including Pubmed, Science Direct, Google Scholar and Scirus. A total of 120 papers were evaluated, however, by omitting similar reports, 103 papers were included in the study.

Results: The most of marine bacterial toxins are classified in one of the following groups: neurotoxins, hepatotoxins and cytotoxins. These toxins have distinct mechanisms of action including blocking of sodium channels in nerve cells, functioning as agonists of acetylcholine receptors, inhibiting of membrane pumps, the inhibition of protein phosphatases 1 and 2A types' enzyme activities and inhibiting of protein synthesis.

Conclusion: The clarification of the marine bacterial toxins structures and their mechanisms of action may be helpful for novel drug design, therapeutic measures and to overcome against bacterial pathogenicity.

Key words: Marine bacteria, Marine toxins, Marine toxicity, Marine toxinology

* Address for correspondence: The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran. Email: akna85@gmail.com

Website: http://bpums.ac.ir
Journal Address: http://ismj.bpums.ac.ir

Cite this article as: Najafi A, Nabipour I. The most important marine bacterial toxins; a review, Iran South Med J 2016; 19(3): 482-510

Copyright © 2016 Najafi, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-noncommercial 4.0 International License which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.