[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 20، شماره 1 - ( دو ماهنامه طب جنوب 1396 ) ::
جلد 20 شماره 1 صفحات 115-134 برگشت به فهرست نسخه ها
مروری بر ارتباط مرجان‌ها و میکروارگانیسم‌های همزیست آنها از دیدگاه بوم‌شناسی و زیست فناوری
زهرا امینی‌خوئی1، مریم مرادی نسب2، اکرم نجفی *3
1- مرکز تحقیقات زیست فناوری دریایی خلیج‌فارس، پژوهشکده علوم زیست پزشکی خلیج‌فارس، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران
2- مرکز تحقیقات طب گرمسیری و عفونی خلیج‌فارس، پژوهشکده‌ علوم زیست پزشکی خلیج‌فارس، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران
3- مرکز تحقیقات زیست فناوری دریایی خلیج‌فارس، پژوهشکده علوم زیست پزشکی خلیج‌فارس، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران ، akna85@gmail.com
چکیده:   (1228 مشاهده)

زمینه: مرجان‌ها، اجتماعات پروکاریوتی متنوع و فراوانی را به شکل همزیست داخلی و یا خارجی در خود جای داده‌اند. در مطالعه مروری حاضر ارتباط بین مرجان‌ها و میکروارگانیسم‌های همزیست آنها از دیدگاه بوم‌شناسی و زیست‌ فناوری را مورد بررسی قرار خواهیم داد.

مواد و روش‌ها: در این مطالعه مقالات نمایه شده در پایگاه های اطلاعاتی Pubmed، Science Direct،Google Scholar و Scirus مورد بررسی قرار گرفتند. واژگان مورد جستجو شامل مرجان، میکروارگانیسم همزیست، بوم‌شناسی و زیست فناوری بودند. در مجموع از میان 120 مقاله و گزارش، با حذف موارد مشابه در نهایت تعداد 103 مقاله ارزیابی گردید.

یافته‌ها: میکروارگانیسم‌های همزیست مرجان‌ها در کنج‌های اکولوژیکی مانند لایه موکوس سطحی، بافت و اسکلت آنها مستقر هستند. آنها در چرخه سولفور، تثبیت نیتروژن، تولید ترکیبات ضد میکروبی و حفاظت از مرجان‌ها در برابر عوامل بیماری‌زا نقش دارند. بسیاری از ترکیبات فعال زیستی که به بی‌مهرگان مانند اسفنج‌ها و مرجان‌ها نسبت داده می‌شود در حقیقت به وسیله باکتری‌های همزیست آنها تولید می‌گردد. متابولیت‌های متنوع تولید شده توسط این میکروارگانیسم‌ها می‌تواند به عنوان دارو مورد استفاده قرار گیرد. پنج ساز وکار غربالگری شامل غربالگری متداول، متاژنومیک، ژنومیک، بیوسنتز ترکیبی و سنتز زیستی برای کشف و گسترش ترکیبات طبیعی میکروب‌های دریایی مورد استفاده قرار می‌گیرند.

نتیجه‌گیری: با توجه به مطالب گردآوری شده می‌توان چنین نتیجه گرفت که مطالعات اکولوژیکی در مورد روابط طبیعی بین مرجان‌ها و میکروارگانیسم های همزیست آنها، پیش نیاز تحقیقات زیست فناورانه بوده و مسیر دستیابی به ترکیبات فعال زیستی موجود در این جاندارن را روشن‌تر می‌سازد. همچنین پیشنهاد می‌شود در گام نخست از تکنولوژی‌های مدرن و روش‌های غربالگری پیشرفته برای شناسایی جمعیت میکروارگانیسمهای دریایی و پس از آن برای شناسایی متابولیت های ثانویه زیستی موجود در آنها استفاده گردد.

واژه‌های کلیدی: مرجان، میکروارگانیسم همزیست، بوم‌شناسی، زیست فناوری
متن کامل [PDF 874 kb]   (374 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: اختلالات سیستمیک- متابولیکی
دریافت: ۱۳۹۵/۱۲/۲۳ | پذیرش: ۱۳۹۵/۱۲/۲۳ | انتشار: ۱۳۹۵/۱۲/۲۳
فهرست منابع
1. Krediet CJ, Ritchie KB, Paul VJ, et al. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Biol Sci 2013; 280(1755): 20122328. [PubMed] [Google Scholar]
2. Blackall LL, Wilson B, van Oppen MJ. Coral-the world's most diverse symbiotic ecosystem. Mol Ecol 2015; 24(21): 5330-47. [PubMed] [Google Scholar]
3. Ghanbari Z, Nabipour I, Farrokhnia M. Marine natural products in prevention and treatment of osteoporosis. Iran South Med J 2015; 18(2): 469-85. (Persian) [Google Scholar]
4. Nabipour I. Marine medicine. Iran South Med J 2010; 13(4): 299. (Persian) [Google Scholar]
5. Farrokhnia M, Nabipour I. Marine natural products as acetylcholinesterase inhibitor: comparative quantum mechanics and molecular docking study. Curr Comput Aided Drug Des 2014; 10(1): 83-95. [PubMed] [Google Scholar]
6. Glynn PW, Manzello DP. Bioerosion and coral reef growth: a dynamic balance. Coral Reefs in the Anthropocene. New York City: Springer; 2015, 67-97. [Google Scholar]
7. Aminikhoei Z, Janahmadi Z, Nabipour I. Biological activities of secondary metabolites of the order Zoanthids. Iran South Med J 2015; 18(5): 1103-14. (Persian) [Google Scholar]
8. Mohebbi GH, Nabipour I, Vazirizadeh A. The sea, the future pharmacy. Iran South Med J 2014;17(4): 748-88. (Persian) [Google Scholar]
9. Nazarian M, Hosseini SJ, Nabipour I, et al. Marine bioactive peptides with anti-cancer potential. Iran South Med J 2015; 18(3): 607-29. (Persian) [Google Scholar]
10. ElAhwany AM, Ghozlan HA, ElSharif HA, et al. Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum. J Basic Microbiol 2015; 55(1): 2-10. [PubMed] [Google Scholar]
11. Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 2006; 322: 1-14. [Google Scholar]
12. Baums IB, Devlin-Durante MK, LaJeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 2014; 23(17): 4203-15. [PubMed] [Google Scholar]
13. Davy SK, Allemand D, Weis VM. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 2012; 76(2): 229-61. [PubMed] [Google Scholar]
14. Douglas AE. Coral bleaching-how and why. Mar Pollut Bull 2003; 46(4): 385-92. [PubMed] [Google Scholar]
15. Mouchka ME, Hewson I, Harvell CD. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol 2010; 50(4): 662-74. [PubMed] [Google Scholar]
16. Rosenberg E, Koren O, Reshef L, et al. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 2007; 5(5): 355-62. [PubMed] [Google Scholar]
17. Willis BL, Page CA, Dinsdale EA. Coral disease on the great barrier reef. Coral health and disease. New York City: Springer, 2004, 69-104. [Google Scholar]
18. Bourne DG, Garren M, Work TM, et al. Microbial disease and the coral holobiont. Trends Microbiol 2009; 17(12): 554-62. [PubMed] [Google Scholar]
19. Reshef L, Koren O, LoyaY, et al. The Coral Probiotic Hypothesis. Environ Microbiol 2006; 8(12): 2068-73. [PubMed] [Google Scholar]
20. Zhang YY, Ling J, Yang QS, et al. The diversity of coral associated bacteria and the environmental factors affect their community variation. Ecotoxicology 2015; 24(7): 1467-77. [PubMed] [Google Scholar]
21. Rohwer F, Seguritan V, Azam F, et al. Diversity and distribution of coral-associated bacteria. Mar Ecol Progress Series 2002; 243: 1-10. [Google Scholar]
22. McFall-Ngai M, Heath-Heckman EA, Gillette AA, et al. The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin Immunol 2012; 24(1): 3-8. [PubMed] [Google Scholar]
23. Lema KA, Willis BL, Bourne DG. Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2012; 78(9): 3136-44. [PubMed] [Google Scholar]
24. Kimes NE, Van Nostrand JD, Weil E, et al. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ Microbiol 2010; 12(2): 541-56. [PubMed] [Google Scholar]
25. Olson ND, Ainsworth TD, Gates RD, et al. Diazotrophic bacteria associated with Hawaiian Montipora corals: Diversity andabundance in correlation with symbiotic dinoflagellates. J Experimental Mar Biol Ecol 2009; 371(2): 140-6. [Google Scholar]
26. Wegley L, Edwards R, Rodriguez-Brito B, et al. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 2007; 9(11): 2707-19. [PubMed] [Google Scholar]
27. Sun W, Zhang F, He L, et al. Pyrosequencing reveals diverse microbial community associated with the Zoanthid Palythoa australiae from the South China Sea. Microb Ecol 2014; 67(4): 942-50. [PubMed] [Google Scholar]
28. Chiu HH, Mette A, Shiu JH, et al. Bacterial Distribution in the Epidermis and Mucus of the Coral Euphyllia glabrescens by CARD-FISH. Zool Stud 2012; 51(8): 1332-42. [Google Scholar]
29. Neulinger SC, Gärtner A, Järnegren J, et al. Tissue-associated “Candidatus Mycoplasma corallicola” and filamentous bacteria on the cold-water coral Lophelia pertusa (Scleractinia). Appl EnvironMicrobiol 2009; 75(5): 1437-44. [PubMed] [Google Scholar]
30. Kvennefors EC, Sampayo E, Kerr C, et al. Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb Ecol 2012; 63(3): 605-18. [PubMed] [Google Scholar]
31. Bourne DG, Munn CB. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 2005; 7(8): 1162-74. [PubMed] [Google Scholar]
32. Koren O, Rosenberg E. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 2006; 72(8): 5254-9. [PubMed] [Google Scholar]
33. Pantos O, Cooney RP, Le Tissier MD, et al. The bacterial ecology of a plague‐like disease affecting the Caribbean coral Montastrea annularis. Environ Microbiol 2003; 5(5): 370-82. [PubMed] [Google Scholar]
34. Rosenberg E, Loya Y. Coral health and disease. New York: Springer Science & Business Media, 2013, 302-18. [Google Scholar]
35. Mouchka ME, Hewson I, Harvell CD. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol 2010; 50(4): 662-74. [PubMed] [Google Scholar]
36. Kuang W, Li J, Zhang S, et al. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea. Front Microbiol 2015; 6: 1094. [PubMed]
37. Taniguchi A, Yoshida T, Hibino K, et al. Community structures of actively growing bacteria stimulated by coral mucus. J Exp Mar Biol Ecol 2015; 469: 105-12. [Google Scholar]
38. Olson ND, Ainsworth TD, Gates RD, et al. Diazotrophic bacteria associated with Hawaiian Montipora corals: diversity and abundance in correlation with symbiotic dinoflagellates. J Exp Mar Biol Ecol 2009; 371(2): 140-6. [Google Scholar]
39. Xu Y, Kersten RD, Nam S-J, Lu L, Al-Suwailem AM, Zheng H, et al. Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. J Am Chem Soc 2012; 134(20): 8625-32. [PubMed] [Google Scholar]
40. Dionisi HM, Lozada M, Olivera NL. Bioprospection of marine microorganisms: biotechnological applications and methods. Rev Argent Microbiología 2012; 44(1): 49-60. [PubMed] [Google Scholar]
41. Dobretsov S, Qian P-Y. The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp. in the inhibition of larval settlement. J Expl Mar Biol Ecol 2004; 299(1): 35-50. [Google Scholar]
42. Karna Radjasa O. Marine invertebrate-associated bacteria in coral reef ecosystems as a new source of bioactive compounds. J Coast Develop 2004; 7(2): 65-70. [Google Scholar]
43. Garren M, Azam F. New directions in coral reef microbial ecology. Environ Microbiol 2012; 14(4): 833-44. [PubMed] [Google Scholar]
44. Kennedy J, Marchesi JR, Dobson AD. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 2008; 7(1):27. [PubMed] [Google Scholar]
45. Xiong ZQ, Wang JF, Hao YY, et al. Recent Advances in the Discovery and Development of Marine Microbial Natural Products. Mar Drugs 2013; 11(3): 700-17. [PubMed] [Google Scholar]
46. Rouhi AM. Supply issues complicate trek of chemicals from sea to market. Chem Eng News 1995; 73(47): 42-4. [Google Scholar]
47. Leal MC, Madeira C, Brandão CA, et al. Bioprospecting of marine invertebrates for new natural products—a chemical and zoogeographical perspective. Molecules 2012; 17(8): 9842-54. [PubMed] [Google Scholar]
48. Simmons TL, Coates RC, Clark BR, et al. Biosynthetic origin of naturalproducts isolated from marine microorganism–invertebrate assemblages. Proc Natl Acad Sci U S A 2008; 105(12): 4587-94. [PubMed] [Google Scholar]
49. Nazarian M, Nabipour I, Najafi A. Marine Actinobacteria: a source for discovering of new deugs. J Microb World 2015; 8(1): 76-92. (Persian) [Google Scholar]
50. Shnit-Orland M, Kushmaro A, editors. Coral mucus bacteria as a source for antibacterial activity. Proceedings of the 11th International Coral Reef Symposium; 2008 Jul. 7-11, Florida, USA: Elsevier, 2008, 257-9. [Google Scholar]
51. Soliev AB, Hosokawa K, Enomoto K. Bioactive pigments from marine bacteria: applications and physiological roles. Evid Based Complement Alternat Med 2011; 2011: 670349. [PubMed] [Google Scholar]
52. Gerber NN. Prodigiosin-like pigments. CRC Crit Rev Microbiol 1975; 3(4): 469-85. [PubMed] [Google Scholar]
53. Williamson NR, Fineran PC, Gristwood T, et al. Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol 2007; 2(6): 605-18. [PubMed] [Google Scholar]
54. Bennett JW, Bentley R. Seeing red: the story of prodigiosin. Adv Appl Microbiol 2000; 47: 1-32. [PubMed] [Google Scholar]
55. Montaner B, Pérez-Tomás R. The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets 2003; 3(1): 57-65. [PubMed] [Google Scholar]
56. Oren A, Rodríguez-Valera F. The contribution of halophilic Bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 2001; 36(2-3): 123-30. [PubMed] [Google Scholar]
57. Misawa N, Satomi Y, Kondo K, et al. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 1995; 177(22): 6575-84. [PubMed] [Google Scholar]
58. Zhang Y, Li X, Bartlett DH, et al. Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles. Curr Opinion Biotechnol 2015; 33: 157-64. [PubMed] [Google Scholar]
59. Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol 2002; 3(2): REVIEWS0003. [PubMed] [Google Scholar]
60. Schut F, de Vries EJ, Gottschal JC, et al. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions. Appl Environ Microbiol 1993; 59(7): 2150-60. [PubMed] [Google Scholar]
61. Yamamura H, Hayakawa M, Iimura Y. Application of sucrose-gradient centrifugation for selective isolation of Nocardia spp. from soil. J Appl Microbiol 2003; 95(4): 677-85. [PubMed] [Google Scholar]
62. Bredholdt H, Galatenko OA, Engelhardt K, et al. Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biologicalactivity. Environ Microbiol 2007; 9(11): 2756-64. [PubMed] [Google Scholar]
63. Bruns A, Cypionka H, Overmann J. Cyclic AMP and Acyl Homoserine Lactones Increase the Cultivation Efficiency of Heterotrophic Bacteria from the Central Baltic Sea. Appl Environ Microbiol 2002; 68(8): 3978-87. [PubMed] [Google Scholar]
64. Tsueng G, Lam KS. A preliminary investigation on the growth requirement for monovalent cations, divalent cations and medium ionic strength of marine actinomycete Salinispora. Appl Microbiol Biotechnol 2010; 86(5): 1525-34. [PubMed] [Google Scholar]
65. Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 2010; 309(1): 1-7. [PubMed] [Google Scholar]
66. DeSantis TZ, Brodie EL, Moberg JP, et al. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 2007; 53(3): 371-83. [PubMed] [Google Scholar]
67. Alex A, Silva V, Vasconcelos V, et al. Evidence of Unique and Generalist Microbes in Distantly RelatedSympatric Intertidal Marine Sponges (Porifera: Demospongiae). PLoS One 2013; 8(11): e80653. [PubMed] [Google Scholar]
68. Ghosh A, Dey N, Bera A, et al. Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Syst 2010; 6: 1. [PubMed] [Google Scholar]
69. Rocha-Martin J, Harrington C, Dobson AD, et al. Emerging Strategies and Integrated Systems Microbiology Technologies for Biodiscovery of Marine Bioactive Compounds. Mar Drugs 2014; 12(6): 3516-59. [PubMed] [Google Scholar]
70. Banik JJ, Brady SF. Recent application of metagenomic approaches towards the discovery of antimicrobials and other bioactive small molecules. Curr Opinion Microb 2010; 13(5): 603-9. [PubMed] [Google Scholar]
71. Nübel U, Garcia-Pichel F, Kühl M, et al. Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl Environ Microbiol 1999; 65(2): 422-30. [PubMed] [Google Scholar]
72. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73(1): 127-41. [PubMed] [Google Scholar]
73. Neilan BA. Identification and Phylogenetic Analysis of Toxigenic Cyanobacteria by Multiplex Randomly Amplified Polymorphic DNA PCR. Appl Environ Microbiol 1995; 61(6): 2286-91. [PubMed] [Google Scholar]
74. Roberts MA, Crawford DL. Use of Randomly Amplified Polymorphic DNA as a Means of Developing Genus- and Strain-Specific Streptomyces DNA Probes. Appl Environ Microbiol 2000; 66(6): 2555-64. [PubMed] [Google Scholar]
75. Heyndrickx M, Vauterin L, Vandamme P, et al. Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J Microbiol Methods 1996; 26(3): 247-59. [Google Scholar]
76. Moeseneder MM, Arrieta JM, Muyzer G, et al. Optimization of Terminal-Restriction Fragment Length Polymorphism Analysis for Complex Marine Bacterioplankton Communities and Comparison with Denaturing Gradient Gel Electrophoresis. Appl Environ Microbiol 1999; 65(8): 3518-25. [PubMed] [Google Scholar]
77. Zhou J. Microarrays for bacterial detection and microbial community analysis. Curr Opinion Microbiol 2003; 6(3): 288-94. [PubMed] [Google Scholar]
78. Wu L, Kellogg L, Devol AH, et al. Microarray-based characterization of microbial community functional structure and heterogeneity in marine sediments from the gulf of Mexico. Appl Environ Microbiol 2008; 74(14): 4516-29. [PubMed] [Google Scholar]
79. Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 2009; 67(1): 6-20. [PubMed] [Google Scholar]
80. Cassler M, Peterson CL, Ledger A, et al. Use of Real-Time qPCR to Quantify Members of the Unculturable Heterotrophic Bacterial Community in a Deep Sea Marine Sponge, Vetulina sp. Microb Ecol 2008; 55(3): 384-94. [PubMed] [Google Scholar]
81. Glöckner FO, Fuchs BM, Amann R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 1999; 65(8): 3721-6. [PubMed] [Google Scholar]
82. Moter A, Göbel UB. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 2000; 41(2): 85-112. [PubMed] [Google Scholar]
83. Kindaichi T, Ito T, Okabe S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 2004; 70(3): 1641-50. [PubMed] [Google Scholar]
84. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10(5): 504-9. [PubMed] [Google Scholar]
85. Torsvik V, Øvreås L. Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 2002; 5(3): 240-5. [PubMed] [Google Scholar]
86. Wellington EMH, Berry A, Krsek M. Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 2003; 6(3): 295-301. [PubMed] [Google Scholar]
87. Webster G, Watt LC, Rinna J, et al. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ Microbiol 2006; 8(9): 1575-89. [PubMed] [Google Scholar]
88. Radajewski S, McDonald IR, Murrell JC. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotechnol 2003; 14(3): 296-302. [PubMed] [Google Scholar]
89. Adamczyk J, Hesselsoe M, Iversen N, et al. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 2003; 69(11): 6875-87. [PubMed] [Google Scholar]
90. Fuerst JA. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biotechnol 2014; 98(17): 7331-47. [PubMed] [Google Scholar]
91. Zhang L, An R, Wang J, et al. Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 2005; 8(3): 276-81. [PubMed] [Google Scholar]
92. Blunt JW, Copp BR, Munro MH, et al. Marine natural products. Nat Prod Rep 2004; 21(1): 1-49. [PubMed] [Google Scholar]
93. Kwon HC, Kauffman CA, JensenPR, et al. Marinomycins A−D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus [PubMed] [Google Scholar]
94. Kennedy J, Marchesi JR, Dobson AD. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 2008; 7: 27. [PubMed] [Google Scholar]
95. Cowan D, Meyer Q, Stafford W, et al. Metagenomic gene discovery: past, present and future. Trends Biotechnol 2005; 23(6): 321-9. [PubMed] [Google Scholar]
96. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 2004; 68(4): 669-85. [PubMed] [Google Scholar]
97. Suenaga H, Ohnuki T, Miyazaki K. Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 2007; 9(9): 2289-97. [PubMed] [Google Scholar]
98. Zhang W, Li Z, Miao X, et al. The screening of antimicrobial bacteria with diverse novel nonribosomal peptide synthetase (NRPS) genes from South China sea sponges. Mar Biotechnol (NY) 2009; 11(3): 346-55. [PubMed] [Google Scholar]
99. Alma’abadi AD, Gojobori T, Mineta K. Marine Metagenome as A Resource for Novel Enzymes. Genomics Proteomics Bioinformatics 2015; 13(5): 290-5. [PubMed] [Google Scholar]
100. Li X, Qin L. Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol 2005; 23(11): 539-43. [PubMed] [Google Scholar]
101. Leal MC, Madeira C, Brandão CA, et al. Bioprospecting of marine invertebrates for new natural products - a chemical and zoogeographical perspective. Molecules 2012; 17(8): 9842-54. [PubMed] [Google Scholar]
102. Martins A, Vieira H, Gaspar H, et al. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Mar Drugs 2014; 12(2): 1066-101. [PubMed] [Google Scholar]
103. Rouhi AM. Science/technology. Chem Eng News Arch 1995; 73(47): 42-4. [Google Scholar]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

کد امنیتی را در کادر بنویسید >




DOI: 10.18869/acadpub.ismj.20.1.115


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amini Khoei Z, Moradinasab M, Najafi A. Review on Association Between Corals and Their Symbiotic Microorganisms From the Ecology and Biotechnology Perspective. Iran South Med J. 2017; 20 (1) :115-134
URL: http://ismj.bpums.ac.ir/article-1-863-fa.html
امینی‌خوئی زهرا، مرادی نسب مریم، نجفی اکرم. مروری بر ارتباط مرجان‌ها و میکروارگانیسم‌های همزیست آنها از دیدگاه بوم‌شناسی و زیست فناوری. طب جنوب. 1396; 20 (1) :115-134

URL: http://ismj.bpums.ac.ir/article-1-863-fa.html

دوره 20، شماره 1 - ( دو ماهنامه طب جنوب 1396 ) برگشت به فهرست نسخه ها
دانشگاه علوم پزشکی بوشهر، طب جنوب ISMJ

Iranian South Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License which allows users to read,
copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly

Copyright © 2017, Iranian South Medical Journal| All Rights Reserved

Persian site map - English site map - Created in 0.052 seconds with 899 queries by yektaweb 3506