Volume 24, Issue 5 (Iranian South Medical Journal 2021)                   Iran South Med J 2021, 24(5): 505-581 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebbi G H, Nabipour I. Toxinology of Marine Venomous Snails. Iran South Med J 2021; 24 (5) :505-581
URL: http://ismj.bpums.ac.ir/article-1-1519-en.html
1- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
2- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , inabipour@gmail.com
Abstract:   (2063 Views)
A surprisingly large number of sea snail species are venomous. Cone snail venoms are produced in a lengthy tubular duct from a complex venom gland and form a cocktail of many toxins, particularly conotoxins which have high potency and specificity for their target specific receptors. They inhibit various channels, neuromuscular receptors or hormones of the victim, and interfere in the transmitted signals of the prey, or dissuade predators. Cone snails have an amazing ability to quickly convert between two different types of defense-evoked and predation-evoked venoms in response to defensive or predatory stimuli. Various conotoxins and conopeptides such as α-conotoxins, σ-conotoxins, ω-conotoxins, μ-conotoxins, ψ-conotoxins, τ-conotoxins, δ-conotoxins, 
κ-conotoxins and conkunitzins, conantokins, contryphans, Ac1 conotoxins, conoinsulins, granulin-like conotoxins from conoides; augerpeptides derived from the venom peptide family Terebridae; turripeptides from the venom peptide family Turridae; crassipeptides venom peptides from Crassispirids; clathurellipeptides from venomous micro-conoides Clathurellidae, and other toxins such as RFamide peptides and endogenous neuropeptide-like peptides such as conopressins, as well as contulakins have been found in cone snail venoms, which have demonstrated remarkable biological and pharmacological functions. Given the approval of some conotoxins, such as the analgesic medication ziconitide (Prialt®) in clinical trials as well as their biomedical potential, current research has focused on these toxins. The use of integrated venomics approaches has dramatically accelerated the detection of conotoxin sequences. It is anticipated that a better understanding and identification of conotoxins and other toxins derived from other sea snails will lead to their use for the treatment of diseases to which humans have succumbed.
Full-Text [PDF 2719 kb]   (854 Downloads)    
Type of Study: Review | Subject: General
Received: 2021/11/28 | Accepted: 2021/11/28 | Published: 2021/11/28

References
1. Olivera BM, Watkins M, Bandyopadhyay P, et al. Adaptive Radiation Of Venomous Marine Snail Lineages And The Accelerated Evolution Of Venom Peptide Genes. Ann N Y Acad Sci 2012; 1267: 61-70.
2. Tu AT, editor. Handbook Of Natural Toxins. Vol 3. Marine Toxins And Venoms. New York: Marcel Dekker Inc, 1988.
3. Pimm SL, Jenkins CN, Abell R, et al. The Biodiversity Of Species And Their Rates Of Extinction, Distribution, And Protection. Science 2014; 344(6187): 1246752.
4. Bouchet P, Lozouet P, Maestrati P, et al. Assessing The Magnitude Of Species Richness In Tropical Marine Environments: High Num Bers Of Molluscs At A New Caledonia Site. Biol J Lin Soc 2002; 75(4): 421-36.
5. Bouchet P, Kantor YI, Sysoev A, et al. A New Operational Classification Of The Conoidea (Gastropoda). J Molluscan Stud 2011; 77(3): 273-308.
6. Cone snails. Queensland Museum. (Accessed January 12, 2021, at https://www.qm.qld.gov.au/Find+out+about/Animals+of+Queensland/Molluscs/Venomous+marine+snails/Cone+snails)
7. Olivera BM, Rivier J, Clark C, et al. Diversity Of Conus Neuropeptides. Science 1990; 249(4966): 257-63.
8. Grandal M, Hoggard M, Neely B, et al. Proteogenomic Assessment Of Intraspecific Venom Variability: Molecular Adaptations In The Venom Arsenal Of Conus Purpurascens. Mol Cell Proteomics 2021; 20: 100100.
9. Tucker JK, Tenorio MJ. Illustrated Catalog Of The Living Cone Shells. Wellington FL, USA: MDM Publishing, 2013, 517.
10. Terlau H, Olivera BM. Conus Venoms: A Rich Source Of Novel Ion Channel-Targeted Peptides. Physiol Rev 2004; 84(1): 41-68.
11. Olivera BM. Conus Venom Peptides: Reflections From The Biology Of Clades And Species. Ann Rev Ecol Syst 2002; 33: 25-47.
12. Olivera BM, Teichert RW. Diversity Of The Neurotoxic Conus Peptides: A Model For Concerted Pharmacological Discovery. Mol Interv 2007; 7(5): 251-60.
13. Fish–eating species. (Accessed February 10, 2021, at https://www.qm.qld.gov.au/Explore/Find+out+about/Animals+of+Queensland/Molluscs/Venomous+marine+snails/~/link.aspx?_id=02E6FB858054483 2BF61E5CF3D038532&_z=z).
14. Queensland Mollusc, 2021. Mollusc-eating species. (Accessed February 10, 2021, at https://www.qm.qld.gov.au/Find+out+about/Animals+of+Queensland/Molluscs/Venomous+marine+snails/Cone+snails/Mollusc-eating+species).
15. Queensland Worm, 2021. Worm-eating species. (Accessed March 20, 2021, at https://www.qm.qld.gov.au/Find+out+about/Animals+of+Queensland/Molluscs/Venomous+marine+snails/Cone+snails/Worm-eating+species)
16. Akondi KB, Muttenthaler M, Dutertre S, et al. Discovery, Synthesis, And Structure Activity Relationships Of Conotoxins. Chem Rev 2014; 114(11): 5815-47.
17. Hu H, Bandyopadhyay PK, Olivera BM, et al. Characterization Of The Conus Bullatus Genome And Its Venom-Duct Transcriptome. BMC Genomics 2011; 12: 60.
18. Biass D, Dutertre S, Gerbault A, et al. Comparative Proteomic Study Of The Venom Of The Piscivorous Cone Snail Conus Consors. J Proteomics 2009; 72(2): 210-8.
19. Calderon-Celis F, Cid-Barrio L, Encinar JR, et al. Absolute Venomics: Absolute Quantification Of Intact Venom Proteins Through Elemental Mass Spectrometry. J Proteomics 2017; 164: 33-42.
20. Pennington MW, Czerwinski A, Norton RS. Peptide Therapeutics From Venom: Current Status And Potential. Bioorg Med Chem 2018; 26(10): 2738-58.
21. Robinson SD, Li Q, Bandyopadhyay PK, et al. Hormone-Like Peptides In The Venoms Of Marine Cone Snails. Gen Comp Endocrinol 2017; 244: 11-18.
22. Dutertre S, Jin AH, Alewood PF, et al. Intraspecific Variations In The DefenceEvoked Venom Of Conus geographus And Estimation Of The Human Lethal Dose. Toxicon 2014; 91: 135-44.
23. Shaw HON. On The Anatomy Of Conus tulipa And Conus textile, Linn. Q J Microsc Sci 1914; 60: 1-60.
24. Hermitte LCD. Venomous Marine Molluscs Of The Genus Conus. Trans R Soc Trop Med Hyg 1946; 39: 485-512.
25. Endean R, Duchemin C. The Venom Apparatus Of Conus magus. Toxicon 1967; 4(4): 275-84.
26. Whysner JA, Saunders PR. Studies On The Venom Of The Marine Snail Conus californicus. Toxicon 1963; 1(3): 113-22.
27. Safavi-Hemami H, Young ND, Williamson NA, et al. Proteomic Interrogation Of Venom Delivery In Marine Cone Snails: Novel Insights Into The Role Of The Venom Bulb. J Proteome Res 2010; 9(11): 5610-9.
28. Lewis RJ, Dutertre S, Vetter I, et al. Conus Venom Peptide Pharmacology. Pharmacol Rev 2012; 64(2): 259-98.
29. Whyte JM, Endean R. Pharmacological Investigation Of The Venoms Of The Marine Snails Conus Textile And Conus geographus. Toxicon 1962; 1(1): 25-31.
30. Marshall J, Kelley WP, Rubakhin SS, et al. Anatomical Correlates Of Venom Production In Conus californicus. Biol Bull 2002; 203(1): 27-41.
31. Marsh H. The Radular Apparatus Of Conus. J Molluscan Stud 1977; 43(1): 1-11.
32. Dutertre S, Lewis RJ. Cone Snail Biology, Bioprospecting And Conservation. In: Gotsiridze-Columbus NS, editors. Snails: Biology, Ecology And Conservation. New York: Nova Science Publisher, 2011, 85-105.
33. Tucker JK, Tenorio MJ. Systematic Classification Of Recent And Fossil Conoidean Gastropods. Hackenheim: ConchBooks, 2009.
34. Kohn AJ, Nishi M, Pernet B. Snail Spears And Scimitars: A Character Analysis Of Conus Radular Teeth. J Molluscan Stud 1999; 65(4): 461-81.
35. Nishi M, Kohn AJ. Radular Teeth Of IndoPacific Molluscivorous Species Of Conus: A Comparative Analysis. J Molluscan Stud 1999; 65(4): 483-97.
36. Marsh H. The Foregut Glands Of Vermivorous Cone Shells. Aust J Zool 1971; 19(4): 313-26.
37. Biggs JS, Olivera BM, Kantor YI. AlphaConopeptides Specifically Expressed In The Salivary Gland Of Conus pulicarius. Toxicon 2008; 52(1): 101-5.
38. Schultz MC. A Correlated Light And Electron Microscopic Study Of The Structure And Secretoryactivity Of The Accessory Salivary Glands Of The Marine Gastropods, Conus flavidus And C. vexillum (Neogastropoda, Conacea). J Morphol 1983; 176(1): 89-111.
39. Miller JA. The Toxoglossan Proboscis Structure And Function. J Molluscan Stud 1989; 55(2): 167-81.
40. Green BR, Bulaj G, Norton RS. Structure And Function Of Μ-Conotoxins, Peptide-Based Sodium Channel Blockers With Analgesic Activity. Future Med Chem 2014; 6(15): 1677-98.
41. James D, Prator CA, Martin GG, et al. Morphology Of Sensory Papillae On The Feeding Proboscis Of Cone Snails (Mollusca, Gastropoda). Invertebr Biol 2014; 133(3): 221-31.
42. Schulz JR, Norton AG, Gilly WF. The Projectile Tooth Of A Fish-Hunting Cone Snail: Conus Catus Injects Venom Into Fish Prey Using A High-Speed Ballistic Mechanism. Biol Bull 2004; 207(2): 77-9.
43. Salisbury SM, Martin GG, Kier WM, et al. Venom Kinematics During Prey Capture In Conus: The Biomechanics Of A Rapid Injection System. J Exp Biol 2010; 213(5): 673-82.
44. Terlau H, Shon KJ, Grilley M, et al. Strategy For Rapid Immobilization Of Prey By A Fish-Hunting Marine Snail. Nature 1996; 381(6578): 148-51.
45. Han TS, Teichert RW, Olivera BM, et al. Conus Venoms-A Rich Source Of Peptide-Based Therapeutics. Curr Pharm Des 2008; 14(24): 2462-79.
46. Liu L, Chew G, Hawrot E, et al. Two Potent Alpha3/5 Conotoxins From Piscivorous Conus achatinus. Acta Biochim Biophys Sin (Shanghai) 2007; 39(6): 438-44.
47. Gowd KH, Dewan KK, Iengar P, et al. Probing Peptide Libraries From Conus achatinus Using Mass Spectrometry And Cdna Sequencing: Identification Of Delta And Omega-Conotoxins. J Mass Spectrom 2008; 43(6): 791-805.
48. Olivera BM, Gray WR, Zeikus R, et al. Peptide Neurotoxins From Fish-Hunting Cone Snails. Science 1985; 230(4732): 1338-43.
49. Abalde S, Tenorio MJ, Afonso CML, et al. Conotoxin Diversity In Chelyconus ermineus (Born, 1778) And The Convergent Origin Of Piscivory In The Atlantic And Indo-Pacific Cones. Genome Biol Evol 2018; 10(10): 2643-62.
50. Dutertre S, Biass D, Stöcklin R, et al. Dramatic Intraspecimen Variations Within The Injected Venom Of Conus consors: An Unsuspected Contribution To Venom Diversity. Toxicon 2010; 55(8): 1453-62.
51. Dutertr S, Jin AH, Vetter I, et al. Evolution Of Separate Predation- And Defence-Evoked Venoms In Carnivorous Cone Snails. Nat Commun 2014; 5: 3521.
52. Phuong MA, Mahardika GN. Targeted Sequencing Of Venom Genes From Cone Snail Genomes Improves Understanding Of Conotoxin Molecular Evolution. Mol Biol Evol 2018; 35(5): 1210-24.
53. Pardos-Blas JR, Irisarri I, Abalde S, et al. Conotoxin Diversity In The Venom Gland Transcriptome Of The Magician’s Cone, Pionoconus magus. Mar Drugs 2019; 17(10): 553.
54. Puillandre N, Duda TF, Meyer C, et al. One, Four Or 100 Genera? A New Classification Of The Cone Snails. J Molluscan Stud 2015; 81(1): 1-23.
55. López-Vera E, Martínez-Hernández L, Aguilar MB, et al. Studies Of Conorfamide-Sr3 On Human Voltage-Gated Kv1 Potassium Channel Subtypes. Mar Drugs 2020; 18(8): 425.
56. Lebbe EK, Tytgat J. In The Picture: Disulfide-Poor Conopeptides, A Class Of Pharmacologically Interesting Compounds. J Venom Anim Toxins Incl Trop Dis 2016; 22: 30.
57. Qiuyun D. Progress In Toxicology And Pharmacology Of Conotoxins. Chin J Pharmacol Toxicol 2016; 12(30): 1397-410.
58. Mansbach RA, Travers T, McMahon BH, et al. Snails In Silico: A Review Of Computational Studies On The Conopeptides. Mar Drugs 2019; 17(3): 145.
59. Buczek O, Bulaj G, Olivera BM. Conotoxins And The Posttransla Tional Modification Of Secreted Gene Products. Cell Mol Life Sci 2005; 62(24): 3067-79.
60. Stanley TB, Stafford DW, Olivera BM, et al. Identification Of A Vitamin K-Dependent Carboxylase In The Venom Duct Of A Conus Snail. FEBS Lett 1997; 407(1): 85-8.
61. Craig AG, Norberg T, Griffin D, et al. ContulakinG, An O-Glycosylated Invertebrate Neurotensin. J Biol Chem 1999; 274(20): 13752-9.
62. Grant MA, Morelli XJ, Rigby AC. Conotoxins And Structural Biology: A Prospective Paradigm For Drug Discovery. Curr Protein Pept Sci 2004; 5(4): 235-48.
63. Daly NL, Craik DJ. Structural Studies Of Conotoxins. IUBMB Life 2009; 61(2): 144-50.
64. Kaas Q, Westermann JC, Halai R, et al. Conoserver, A Database For Conopeptide Sequences And Structures. Bioinformatics 2008; 24(3): 445-6.
65. Olivera BM. Conus Peptides: BiodiversityBased Discovery And Exogenomics. J Biol Chem 2006; 281(42): 31173-7.
66. Becker S, Terlau H. Toxins From Cone Snails: Properties, Applications And Biotechnological Production. Appl Microbiol Biotechnol 2008; 79(1): 1-9.
67. Sharpe IA, Gehrmann J, Loughnan ML, et al. Two New Classes Of Conopeptides Inhibit The Α1-Adrenoceptor And Noradrenaline Transporter. Nature Neurosci 2001; 4(9): 902-7.
68. Hillyard DR, Monje VD, Mintz IM, et al. A New Conus Peptide Ligand For Mammalian Presynaptic Ca2+ Channels. Neuron 1992; 9(1): 69-77.
69. Kim HW, McIntosh JM. Alpha6 nAChR Subunit Residues That Confer Alpha-Conotoxin BuIA Selectivity. FASEB J 2012; 26(10): 4102-10.
70. Stewart MJ, Harding BI, Adamson KJ, et al. Characterisation Of Two Conopressin Precursor Isoforms In The Land Snail, Theba pisana. Peptides 2016; 80: 32-9.
71. Reyes-Guzman EA, Vega-Castro N, Reyes-Montano EA, et al. Antagonistic Action On NMDA/GluN2B Mediated Currents Of Two Peptides That Were Conantokin-G Structure-Based Designed. BMC Neurosci 2017; 18: 44.
72. McIntosh JM, Jones RM. Cone Venom - From Accidental Stings To Deliberate Injection. Toxicon 2001; 39(10): 1447-51.
73. McIntosh JM, Santos AD, Olivera BM. Conus Peptides Targeted To Specific Nicotinic Acetylcholine Receptor Subtypes. Annu Rev Biochem 1999; 68: 59-88.
74. Röckel D, Korn W, Kohn AJ. Manual of the living Conidae. WiesBaden, Germany: Verlag Christa Hemmen, 1995.
75. Kaas Q, Yu R, Jin AH, et al. Conoserver: Updated Content, Knowledge, And Discovery Tools In The Conopeptide Database. Nucleic Acids Res 2012; 40(D1): D325-30.
76. Doyle DA, Cabral JM, Pfuetzner RA, et al. The Structure Of The Potassium Channel: Molecular Basis Of K+ Conduction And Selectivity. Science 1998; 280(5360): 69-77.
77. Lange A, Giller K, Hornig S, et al. ToxinInduced Conformational Changes In A Potassium Channel Revealed By Solid-State NMR. Nature 2006; 440(7086): 959-62.
78. King GF, Gentz MC, Escoubas P, et al. A Rational Nomenclature For Naming Peptide Toxins From Spiders And Other Venomous Animals. Toxicon 2008; 52(2): 264-76.
79. Jiang H, Wang CZ, Xu CQ, et al. A Novel M-Superfamily Conotoxin With A Unique Motif From Conus vexillum. Peptides 2006; 27(4): 682-9.
80. Zhou M, Wang L, Wu Y, et al. Characterizing The Evolution And Functions Of The MSuperfamily Conotoxins. Toxicon 2013; 76: 150-9.
81. Tosti E, Boni R, Gallo A. μ-Conotoxins Modulating Sodium Currents In Pain Perception And Transmission: A Therapeutic Potential. Mar Drugs 2017; 15(10): 295.
82. Corpuz GP, Jacobsen RB, Jimenez EC, et al. Definition Of The M-Conotoxin Superfamily: Characterization Of Novel Peptides From Molluscivorous Conus Venoms. Biochemistry 2005; 44(22): 8176-86.
83. Du WH, Han YH, Huang FJ, et al. Solution Structure Of An M-1 Conotoxin With A Novel Disulfide Linkage. FEBS J 2007; 274(10): 2596-602.
84. Franco A, Dovell S, Möller C, et al. Structural Plasticity Of Mini-M Conotoxins - Expression Of All Mini- M Subtypes By Conus Regius. FEBS J 2018; 285(5): 887-902.
85. Remigio EA, Duda Jr TF. Evolution Of Ecological Specialization And Venom Of A Predatory Marine Gastropod. Mol Ecol 2008; 17(4): 1156-62.
86. Hansson K, Furie B, Furie BC, et al. Isolation And Characterization Of Three Novel GlaContaining Conus Marmoreus Venom Peptides, One With A Novel Cysteine Pattern. Biochem Biophys Res Commun 2004; 319(4): 1081-7.
87. Sousa SR, McArthur JR, Brust A, et al. Novel Analgesic Ω-Conotoxins From The Vermivorous Cone Snail Conus moncuri Provide New Insights Into The Evolution Of Conopeptides. Sci Rep 2018; 8: 13397.
88. Englan LJ, Imperial J, Jacobsen R, et al. Inactivation Of A Serotonin-Gated Ion Channel By A Polypeptide Toxin From Marine Snails. Science 1998; 281(5376): 575-8.
89. Teichert RW, Jimenez EC, Olivera BM. αS-conotoxin RVIIIA: A Structurally Unique Conotoxin That Broadly Targets Nicotinic Acetylcholine Receptors. Biochemistry 2005; 44(21): 7897-902.
90. Lirazan MB, Hooper D, Corpuz GP, et al. The Spasmodic Peptide Defines A New Conotoxin Superfamily. Biochemistry 2000; 39(7): 1583-8.
91. Dutertre S, Jin AH, Kaas Q, et al. Deep Venomics Reveals The Mechanism For Expande Peptide Diversity In Cone Snail Venom. Mol Cell Proteomics 2013; 12(2): 312-29.
92. Jin AH, Dutertre S, Kaas Q, et al. Transcriptomic Messiness In The Venom Duct Of Conus miles Contributes To Conotoxin Diversity. Mol Cell Proteomics 2013; 12(12): 3824-33.
93. Jimenez EC, Shetty RP, Lirazan M, et al. Novel Excitatory Conus Peptides Define A New Conotoxin Superfamily. J Neurochem 2003; 85(3): 610-21.
94. Figueroa-Montiel A, Bernaldez J, Jimenez S, et al. Antimycobacterial Activity: A New Pharmacological Target For Conotoxins Found In The First Reported Conotoxin From Conasprella ximenes. Toxins 2018; 10(2): 51.
95. Moller C, Rahmankhah S, Lauer-Fields J, et al. A Novel Conotoxin Framework With A Helix-Loop-Helix (Cs α/α) Fold. Biochemistry 2005; 44(49): 15986-96.
96. Oroz-Parra I, Navarro M, Cervantes-Luevano KE, et al. Apoptosis Activation In Human Lung Cancer Cell Lines By A Novel Synthetic Peptide Derived From Conus californicus Venom. Toxins 2016; 8(2): 38.
97. Peng C, Liu L, Shao X, et al. Identification Of A Novel Class Of Conotoxins Defined As V-Conotoxins With A Unique Cysteine Pattern And Signal Peptide Sequence. Peptides 2008; 29(6): 985-91.
98. Ye M, Hong J, Zhou M, et al. A Novel Conotoxin, Qc16a, With A Unique Cysteine Framework And Folding. Peptides 2011; 32(6): 1159-65.
99. Yuan DD, Liu L, Shao XX, et al. Isolation And Cloning Of A Conotoxin With A Novel Cysteine Pattern From Conus caracteristicus. Peptides 2008; 29(9): 1521-5.
100. Chen JS, Fan CX, Hu KP, et al. Studies On Conotoxins Of Conus betulinus. J Nat Toxins 1999; 8(3): 341-9.
101. Chen P, Garrett JE, Watkins M, et al. Purification And Characterization Of A Novel Excitatory Peptide From Conus Distans Venom That Defines A Novel Gene Superfamily Of Conotoxins. Toxicon 2008; 52(1): 139-45.
102. Prashanth JR, Dutertre S, Jin AH, et al. The Role Of Defensive Ecological Interactions In The Evolution Of Conotoxins. Mol Ecol 2016; 25(2): 598-615.
103. Xu S, Zhang T, Kompella SN, et al. Conotoxin αDGeXXA Utilizes A Novel Strategy To Antagonize Nicotinic Acetylcholine Receptors. Sci Rep 2015; 5: 14261.
104. Moller C, Mari F. 9.3 KDa Components Of The Injected Venom Of Conus Purpurascens Define A New Five-Disulfide Conotoxin Framework. Biopolymers 2011; 96(2): 158-65.
105. Robinson SD, Safavi-Hemami H, McIntosh LD, et al. Diversity Of Conotoxin Gene Superfamilies In The Venomous Snail, Conus victoriae. PLoS One 2014; 9(2): e87648.
106. Elliger CA, Richmond TA, Lebaric ZN, et al. Diversity Of Conotoxin Types From Conus californicus Reflects A Diversity Of Prey Types And A Novel Evolutionary History. Toxicon 2011; 57(2): 311-22.
107. Biggs JS, Watkins M, Puillandre N, et al. Evolution Of Conus Peptide Toxins: Analysis Of Conus californicus Reeve, 1844. Mol Phylogenet Evol 2010; 56(1): 1-12.
108. Ye M, Khoo KK, Xu S, et al. Ahelical Conotoxin From Conus imperialis Has A Novel Cysteine Framework And Defines A New Superfamily. J Biol Chem 2012; 287(18): 14973-83.
109. Luo S, Christensen S, Zhangsun D, et al. A Novel Inhibitor ofα9α10 Nicotinic Acetylcholine Receptors From Conus vexillum Delineates A New Conotoxin Superfamily. PLoS One 2013; 8(1): e54648.
110. Aguilar MB, Zugasti-Cruz A, Falcon A, et al. A Novel Arrangement Of Cys Residues In A Paralytic Peptide Of Conus cancellatus (Jr. Syn.: Conus austini), A Worm-Hunting Snail From The Gulf Of Mexico. Peptides 2013; 41: 38-44.
111. Bernaldez J, Roman-Gonzalez SA, Martinez O, et al. A Conus Regularis Conotoxin With A Novel Eightcysteine Framework Inhibits Cav2.2 Channels And Displays An Antinociceptive Activity. Mar Drugs 2013; 11(4): 1188-202.
112. Santos AD, McIntosh JM, Hillyard DR, et al. The A-Superfamily Of Conotoxins: Structural And Functional Divergence. J Biol Chem 2004; 279(17): 17596-606.
113. Wen J, Adams DJ, Hung A. Interactions Of The α3β2 Nicotinic Acetylcholine Receptor Interfaces with α-Conotoxin LsIA and its Carboxylated C-terminus Analogue: Molecular Dynamics Simulations. Mar Drugs 2020; 18(7): 349.
114. Paterson D, Nordberg A. Neuronal Nicotinic Receptors In The Human Brain. Prog Neurobiol 2000; 61(1): 75-111.
115. Marquart LA, Turner MW, Warner LR, et al. Ribbon α-Conotoxin KTM Exhibits Potent Inhibition of Nicotinic Acetylcholine Receptors. Mar Drugs 2019; 17(12): 669.
116. Ellison M, Gao F, Wang HL, et al. α - Conotoxins ImI and ImII Target Distinct Regions Of The Human α7 Nicotinic Acetylcholine Receptor And Distinguish Human Nicotinic Receptor Subtypes. Biochemistry 2004; 43(51): 16019-26.
117. Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh Receptors As Therapeutic Targets In CNS Disorders. Trends Pharmacol Sci 2015; 36(2): 96-108.
118. Singh S, Pillai S, Chellappan S. Nicotinic Acetylcholine Receptor Signaling In Tumor Growth And Metastasis. J Oncol 2011; 2011: 456743.
119. Hurst R, Rollema H, Bertrand D. Nicotinic Acetylcholine Receptors: From Basic Science To Therapeutics. Pharmacol Ther 2013; 137(1): 22-54.
120. Osipov AV, Terpinskaya TI, Yanchanka T, et al. α-Conotoxins Enhance Both The In Vivo Suppression Of Ehrlich Carcinoma Growth And In Vitro Reduction In Cell Viability Elicited By Cyclooxygenase And Lipoxygenase Inhibitors. Mar Drugs 2020; 18(4): 193.
121. Napier IA, Klimis H, Rycroft BK, et al. Intrathecal α-conotoxins Vc1.1, AuIB and MII Acting On Distinct Nicotinic Receptor Subtypes Reverse Signs Of Neuropathic Pain. Neuropharmacology 2012; 62(7): 2202-7.
122. Jin AH, Vetter I, Dutertre S, et al. MrIC, A Novel Α-Conotoxin Agonist In The Presence Of PNU At Endogenous α7 Nicotinic Acetylcholine Receptors. Biochemistry 2014; 53(1): 1-3.
123. Giribaldi J, Dutertre S. Alpha-Conotoxins To Explore The Molecular, Physiological And Pathophysiological Functions Of Neuronal Nicotinic Acetylcholine Receptors. Neurosci Lett 2018; 679: 24-34.
124. Lebbe EK, Peigneur S, Wijesekara I, et al. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview. Mar Drugs 2014; 12(5): 2970-3004.
125. Craik DJ, Fairlie DP, Liras S, et al. The Future Of Peptide-Based Drugs. Chem Biol Drug Des 2013; 81(1): 136-47.
126. Inserra MC, Kompella SN, Vetter I, et al. Isolation And Characterization Of α-conotoxin LsIA With Potent Activity At Nicotinic Acetylcholine Receptors. Biochem Pharmacol 2013; 86(6): 791-9.
127. Millar NS, Gotti C. Diversity Of Vertebrate Nicotinic Acetylcholine Receptors. Neuropharmacology 2009; 56(1): 237-46.
128. Dutertre S, Nicke A, Lewis RJ. Beta2 Subunit Contribution To 4/7 α -conotoxin Binding To The Nicotinic Acetylcholine Receptor. J Biol Chem 2005; 280(34): 30460-8.
129. Abraham N, Healy M, Ragnarsson L, et al. Structural Mechanisms For α-Conotoxin Activity At The Human α3β4 Nicotinic Acetylcholine Receptor. Sci Rep 2017; 7: 45466.
130. Turner MW, Marquart LA, Phillips PD, et al. Mutagenesis Of Alpha-Conotoxins For Enhancing Activity And Selectivity For Nicotinic Acetylcholine Receptors. Toxins 2019; 11(2): 113.
131. Daniel JT, Clark RJ. Molecular Engineering Of Conus Peptides As Therapeutic Leads. Adv Exp Med Biol 2017; 1030: 229-54.
132. Friedman JR, Richbart SD, Merritt JC, et al. Acetylcholine Signaling System In Progression Of Lung Cancers. Pharmacol Ther 2019; 194: 222-54.
133. Terpinskaya TI, Osipov AV, Kuznetsova TE, et al. α -conotoxins Revealed Different Roles Of Nicotinic Cholinergic Receptor Subtypes In Oncogenesis Of Ehrlich Tumor And In The Associated Inflammation. Dokl Biochem Biophys 2015; 463(1): 216-9.
134. Clark RJ, Fischer H, Dempster L, et al. Engineering Stable Peptide Toxins By Means Of Backbone Cyclization: Stabilization Of The α-conotoxin MII. Proc Natl Acad Sci USA 2005; 102(39): 13767-72.
135. Cai Y, Yousef A, Grandis JR, et al. NSAID Therapy For PIK3CA-Altered Colorectal, Breast, And Head And Neck Cancer. Adv Biol Regul 2020; 75: 100653.
136. Cartier GE, Yoshikami D, Gray WR, et al. A New Alpha-Conotoxin Which Targets alpha3beta2 Nicotinic Acetylcholine Receptors. J Biol Chem 1996; 271(13): 7522-8.
137. Berry JN, Engle SE, McIntosh JM, et al. α6-Containing Nicotinic Acetylcholine Receptors In Midbrain Dopamine Neurons Are Poised To Govern Dopamine-Mediated Behaviors And Synaptic Plasticity. Neuroscience 2015; 304: 161-75.
138. Sanjakdar SS, Maldoon PP, Marks MJ, et al. Differential Roles Of alpha6beta2* And alpha4beta2* Neuronal Nicotinic Receptors In Nicotine- And Cocaine-Conditioned Reward In Mice. Neuropsychopharmacology 2015; 40(2): 350-60.
139. Mackey EDW, Engle SE, Kim MR, et al. α6* Nicotinic Acetylcholine Receptor Expression And Function In A Visual Salience Circuit. J Neurosci 2012; 32(30): 10226-37.
140. Li X, Wang S, Zhu X, et al. Effects Of Cyclization On Activity And Stability Of α-Conotoxin TxIB. Mar Drugs 2020; 18(4): 180.
141. Zhangsun D, Wu Y, Zhu X, et al. Antagonistic Activity Of α-Conotoxin TxIB Isomers On Rat And Human α6 /α3β2β3 Nicotinic Acetylcholine Receptors. Chin Pharm J 2017; 52: 574-80.
142. You S, Li X, Xiong J, et al. α-Conotoxin TxIB: A Uniquely Selective Ligand For α6/α3β2β3 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Conditioned Place Preference In Mice. Mar Drugs 2019; 17(9): 490.
143. Cuny H, Yu R, Tae HS, et al. α- Conotoxins Active At α3-Containing Nicotinic Acetylcholine Receptors And Their Molecular Determinants For Selective Inhibition. Br J Pharmacol 2018; 175(11): 1855-68.
144. Xu Q, Tae HS, Wang Z, et al. Rational Design Of α-Conotoxin RegIIA Analogues Selectively Inhibiting The Human α3β2 Nicotinic Acetylcholine Receptor Through Computational Scanning. ACS Chem Neurosci 2020; 11(18): 2804-11.
145. Gu HF, Li N, Tang YL, et al. NicotinateCurcumin Ameliorates Cognitive Impairment In Diabetic Rats By Rescuing Autophagic Flux In CA1 Hippocampus. CNS Neurosci Ther 2019; 25(4): 430-41.
146. Adams DJ, Berecki G. Mechanisms Of Conotoxin Inhibition Of N-type (Ca(v)2.2) Calcium Channels. Biochim Biophys Acta 2013; 1828(7): 1619-28.
147. Gautam S, Roy S, Ansari MN, et al. DuCLOX-2/5 Inhibition: A Promising Target For Cancer Chemoprevention. Breast Cancer 2017; 24(2): 180-90.
148. Cheneval O, Schroeder CI, Durek T, et al. Fmoc-Based Synthesis Of Disulfide-Rich Cyclic Peptides. J Org Chem 2014; 79(12): 5538-44.
149. Wu X, Huang YH, Kaas Q, et al. Backbone Cyclization Of Analgesic Conotoxin GeXIVA Facilitates Direct Folding Of The Ribbon Isomer. J Biol Chem 2017; 292(41): 17101-12.
150. Van Lierop BJ, Robinson SD, Kompella SN, et al. Dicarba α-conotoxin Vc1.1 Analogues With Differential Selectivity For Nicotinic Acetylcholine And GABAB Receptors. ACS Chem Biol 2013; 8(8): 1815-21.
151. Christensen SB, Hone AJ, Roux I, et al. RgIA4 Potently Blocks Mouse α9α10 nAChRs and Provides Long Lasting Protection against Oxaliplatin-Induced Cold Allodynia. Front Cell Neurosci 2017; 11: 219.
152. Romero HK, Christensen SB, Mannelli LDC, et al. Inhibition of α9α10 Nicotinic Acetylcholine Receptors Prevents Chemotherapyinduced Neuropathic Pain. Proc Natl Acad Sci USA 2017; 114(10): E1825-32.
153. Zouridakis M, Papakyriakou A, Ivanov IA, et al. Crystal Structure Of The Monomeric Extracellular Domain Of ɑ9 Nicotinic Receptor Subunit In Complex With ɑ-conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding To ɑ9β10 Nicotinic Receptors. Front Pharmacol 2019; 10: 474.
154. Mueller A, Starobova H, Inserra MC, et al. α-Conotoxin MrIC Is A Biased Agonist At α7 Nicotinic Acetylcholine Receptors. Biochem Pharmacol 2015; 94(2): 155-63.
155. Starobova H, Himaya SW, Lewis RJ, et al. Transcriptomics In Pain Research: Insights From New And Old Technologies. Mol Omics 2018; 14(6): 389-404.
156. Himaya SWA, Mari F, Lewis RJ. Accelerated Proteomic Visualization Of Individual Predatory Venoms Of Conus purpurascens Reveals Separately Evolved Predation-Evoked Venom Cabals. Sci Rep 2018; 8(1): 330.
157. Pawar VK, Meher JG, Singh Y, et al. Targeting Of Gastrointestinal Tract For Amended Delivery Of Protein/Peptide Therapeutics: Strategies And Industrial Perspectives. J Control Release 2014; 196: 168-83.
158. Ismail R, Csoka I. Novel Strategies In The Oral Delivery Of Antidiabetic Peptide Drugs-Insulin, GLP1 And Its Analogs. Eur J Pharm Biopharm 2017; 115: 257-67.
159. Lovelace ES, Gunasekera S, Alvarmo C, et al. Stabilization Of Alpha-Conotoxin Auib: Influences Of Disulfide Connectivity And Backbone Cyclization. Antioxid Redox Signal 2011; 14(1): 87-95.
160. Halai R, Callaghan B, Daly NL, et al. Effects Of Cyclization On Stability, Structure, And Activity Of Alpha-Conotoxin RgIA At The Alpha9alpha10 Nicotinic Acetylcholine Receptor And GABA(B) Receptor. J Med Chem 2011; 54(19): 6984-92.
161. Grau V, Richter K, Hone AJ, et al. Conopeptides [V11L; V16D] ArIB and RgIA4: Powerful Tools Forthe Identification Of Novel Nicotinic Acetylcholine ReceptorsIn Monocytes. Front Pharmacol 2019; 9: 1499.
162. Clark RJ, Jensen J, Nevin ST, et al. The Engineering Of An Orally Active Conotoxin For The Treatment Of Neuropathic Pain. Angew Chem Int Ed Engl 2010; 49(37): 6545-8.
163. Liu Z, Bartels P, Sadeghi M, et al. A Novel α-conopeptide Eu1.6 Inhibits N-Type (CaV2.2) Calcium Channels And Exhibits Potent Analgesic Activity. Sci Rep 2018; 8: 1004.
164. Van Hout M, Valdes A, Christensen SB, et al. α-Conotoxin VnIB From Conus Ventricosus Is A Potent And Selective Antagonist Of α6β4 Nicotinic Acetylcholine Receptors. Neuropharmacology 2019; 157: 107691.
165. Yang L, Tae HS, Fan Z, et al. A Novel Lid-Covering Peptide Inhibitor Of Nicotinic Acetylcholine Receptors Derived From αDConotoxin GeXXA. Mar Drugs 2017; 15(6): 164.
166. Christensen SB, Bandyopadhyay PK, Olivera BM, et al. αS-Conotoxin GVIIIB Potently And Selectively Blocks α9α10 Nicotinic Acetylcholine Receptors. Biochem Pharmacol 2015; 96(4): 349-56.
167. Luo S, Zhangsun D, Harvey PJ, et al. Cloning, Synthesis, And Characterization Of αOconotoxin GeXIVA, A Potent α9α10 Nicotinic Acetylcholine Receptor Antagonist. Proc Natl Acad Sci USA 2015; 112(30): E4026-35.
168. Marquart LA, Turner MW, McDougal OM. Qualitative Assay To Detect Dopamine Release By Ligand Action On Nicotinic Acetylcholine Receptors. Toxins 2019; 11(12): 682.
169. Yu S, Li Y, Chen J, et al. TAT-Modified OmegaConotoxin MVIIA For Crossing The Blood-Brain Barrier. Mar Drugs 2019; 17(5): 286.
170. Pope JE, Deer TR. Ziconotide: A Clinical Update And Pharmacologic Review. Expert Opin Pharmacother 2013; 14(7): 957-66.
171. Miljanich GP. Ziconotide: Neuronal Calcium Channel Blocker For Treating Severe Chronic Pain. Curr Med Chem 2004; 11(23): 3029-40.
172. Merrifield RB. Solid Phase Peptide Synthesis. 1. Synthesis Of A Tetrapeptide. J Am Chem Soc 1963; 85(14): 2149-54.
173. Becker S, Atherton E, Gordon RD. Synthesis And Characterization Of Mu-Conotoxin IIIa. Eur J Biochem 1989; 185(1): 79-84.
174. Georgiou G, Valax P. Expression Of Correctly Folded Proteins In Escherichia coli. Curr Opin Biotechnol 1996; 7(2): 190-7.
175. Prinz WA, Aslund F, Holmgren A, et al. The Role of The Thioredoxin and Glutaredoxin PathwaysIn Reducing Protein Disulfide BondsIn The Escherichia coli Cytoplasm. J Biol Chem 1997; 272(25): 15661-7.
176. Malakhov MP, Mattern MR, Malakhova OA, et al. SUMO Fusions And SUMO-Specific Protease for Efficient Expression and Purification of Proteins. J Struct Funct Genomics 2004; 5: 75-86.
177. Kapust RB, Waugh DS. Escherichia coli Maltose-Binding Protein Is Uncommonly Effective at Promoting the Solubility of Polypeptides to Which It Is Fused. Protein Sci 1999; 8(8): 1668-74.
178. Lavallie ER, Diblasio EA, Kovacic S, et al. A Thioredoxin Gene Fusion Expression System That Circumvents Inclusion Body Formation in the Escherichia coli Cytoplasm. Biotechnology 1993; 11(2): 187-93.
179. Nygren PA, Stahl S, Uhlen M. Engineering Proteins To Facilitate Bioprocessing. Trends Biotechnol 1994; 12(5): 184-8.
180. Gottesman S. Proteases And Their Targets In Escherichia coli. Annu Rev Genet 1996; 30: 465-506.
181. Xia Z, Chen Y, Zhu Y, et al. Recombinant Omega-Conotoxin MVIIA Possesses Strong Analgesic Activity. BioDrugs 2006; 20(5): 275-81.
182. Zamponi GW. Targeting Voltage-Gated Calcium Channels In Neurological And Psychiatric Diseases. Nat Rev Drug Discov 2016; 15: 19-34.
183. Sanford M. Intrathecal Ziconotide: A Review Of Its Use In Patients With Chronic Pain Refractory To Other Systemic Or Intrathecal Analgesics. CNS Drugs 2013; 27(11): 989-1002.
184. Lewis RJ, Nielsen KJ, Craik DJ, et al. Novel ω-Conotoxins From Conus catus Discriminate Among Neuronal Calcium Channel Subtypes. J Biol Chem 2000; 275(45): 35335-44.
185. Kolosov A, Aurini L, Williams ED, et al. Intravenous Injection Of Leconotide, An ω-Conotoxin: Synergistic Antihyperalgesic Effects With Morphine In A Rat Model Of Bone Cancer Pain. Pain Med 2011; 12(6): 923-41.
186. Wang F, Yan Z, Liu Z, et al. Molecular Basis Of Toxicity Of N-type Calcium Channel Inhibitor MVIIA. Neuropharmacology 2016; 101: 137-45.
187. Sousa SR, Vetter I, Lewis RJ. Venom Peptides As A Rich Source Of Cav2.2 Channel Blockers. Toxins 2013; 5(2): 286-314.
188. Pan X, Li Z, Huang X, et al. Molecular Basis For Pore Blockade Of Human Na(+ ) Channel Nav1.2 By The mu-Conotoxin KIIIA. Science 2019; 363(6433): 1309-13.
189. Gajewiak J, Azam L, Imperial J, et al. A Disulfide Tether Stabilizes The Block Of Sodium Channels By The Conotoxin μO§-GVIIJ. Proc Natl Acad Sci USA 2014; 111(7): 2758-63.
190. Chen F, Huang W, Jiang T, et al. Determination of the μ- Conotoxin PIIIA Specificity Against Voltage-Gated Sodium Channels From Binding Energy Calculations. Mar Drugs 2018; 16(5): 153.
191. Van Wagoner RM, Ireland CM. An Improved Solution Structure For ψ-Conotoxin PiiiE. Biochemistry 2003; 42(21): 6347-52.
192. Van Wagoner RM, Jacobsen RB, Olivera BM, et al. Characterization And Three-Dimensional Structure Determination Of ψ-conotoxin piiif, A Novel Noncompetitive Antagonist Of Nicotinic Acetylcholine Receptors. Biochemistry 2003; 42(21): 6353-62.
193. Violette A, Biass D, Dutertre S, et al. Large-Scale Discovery Of Conopeptides And Conoproteins In The Injectable Venom Of A Fishhunting Cone Snail Using A Combined Proteomic And Transcriptomic Approach. J Proteomics 2012; 75(17): 5215-25.
194. Del Rio-Sancho S, Cros C, Coutaz B, et al. Cutaneous Iontophoresis Of μ-conotoxin CnIIIC-A Potent Nav1.4 Antagonist with Analgesic, Anaesthetic and Myorelaxant0 Properties. Int J Pharm 2017; 518(1-2): 59-65.
195. Bennett DL, Clark AJ, Huang J, et al. The Role Of Voltage-Gated Sodium Channels In Pain Signaling. Physiol Rev 2019; 99(2): 1079-151.
196. Deuis JR, Mueller A, Israel MR, et al. The Pharmacology Of Voltage-Gated Sodium Channel Activators. Neuropharmacology 2017; 127: 87-108.
197. Leipold E, Ullrich F, Thiele M, et al. Subtype-Specific Block Of Voltage-Gated K ( + ) Channels By μ-Conopeptides. Biochem Biophys Res Commun 2017; 482(4): 1135-40.
198. Wilson MJ, Yoshikami D, Azam L, et al. Block Of Sodium Channels NaV1.1-1.8 By A Panel Of µ-Conotoxins: Identity Of Channels Responsible For Action Potentials In Sciatic Nerve. PNAS 2011; 338: 689-93.
199. Aman JW, Imperial JS, Ueberheide B, et al. Insights Into The Origins Of Fish Hunting In Venomous Cone Snails From Studies Of Conus tessulatus. Proc Natl Acad Sci USA 2015; 112(16): 5087-92.
200. Jin AH, Israel MR, Inserra MC, et al. δ-Conotoxin SuVIA Suggests An Evolutionary Link Between Ancestral Predator Defence And The Origin Of Fish-Hunting Behaviour In Carnivorous Cone Snails. Proc Royal Soc B Biol Sci 2015; 282(1811): 20150817.
201. Boccaccio A, Conti F, Olivera BM, et al. Binding Of Kappa-Conotoxin PVIIA To Shaker K+ Channels Reveals Different K+ And Rb+ Occupancies Within The Ion Channel Pore. J Gen Physiol 2004; 124(1): 71-81.
202. Naranjo D. Inhibition Of Single Shaker K Channels By Kappa-Conotoxin-PVIIA. Biophys J 2002; 82(6): 3003-11.
203. Shon KJ, Stocker M, Terlau H, et al. Kappa-Conotoxin PVIIA Is A Peptide Inhibiting The Shaker K+ Channel. J Biol Chem 1998; 273(1): 33-8.
204. Zhang SJ, Yang XM, Liu GS, et al. CGX-1051, A Peptide From Conus Snail Venom, Attenuates Infarction In Rabbit Hearts When Administered At Reperfusion. J Cardiovasc Pharmacol 2003; 42(6): 764-71.
205. Kancherla AK, Meesala S, Jorwal P, et al. A Disulfide Stabilized Β-Sandwich Defines The Structure Of A New Cysteine Framework MSuperfamily Conotoxin. ACS Chem Biol 2015; 10(8): 1847-60.
206. Aguilar MB, Pérez-Reyes LI, López Z, et al. Peptide Sr11a From Conus spurius Is A Novel Peptide Blocker For Kv1 Potassium Channels. Peptides 2010; 31(7): 1287-91.
207. Dawson PE, Kent SBH. Synthesis Of Native Proteins By Chemical Ligation. Annu Rev Biochem 2000; 69: 923-60.
208. Dy CY, Buczek P, Imperial JS, et al. Structure Of Conkunitzin-S1, A Neurotoxin And Kunitz-Fold Disulfide Variant From Cone Snail. Acta Crystallogr D Biol Crystallogr 2006; 62: 980-90.
209. Baneyx F. Recombinant Protein Expression In Escherichia coli. Curr Opin Biotechnol 1999; 10(5): 411-21.
210. Donevan SD, McCabe RT. Conantokin G Is An NR2Bselective Competitive Antagonist Of N-Methyl-D-Aspartate Receptors. Mol Pharmacol 2000; 58(3): 614-23.
211. Chen Z, Blandl T, Prorok M, et al. Conformational Changes Inconantokin-G Induced Upon Binding Of Calcium And Magnesium As Revealed By NMR Structural Analysis. J Biol Chem 1998; 273(26): 16248-58.
212. Liu X, Yao G, Wang K, et al. Structural And Functional Characterization Of Conotoxins From Conus achatinus Targeting NMDAR. Mar Drugs 2020; 18(3): 135.
213. Yuan Y, Balsara RD, Zajicek J, et al. Discerning The Role Of The Hydroxyproline Residue In The Structure Of Conantokin Rl-B And Its Role In Glun2b Subunit-Selective Antagonistic Activity Toward N-Methyl-dAspartate Receptors. Biochemistry 2016; 55(51): 7112-22.
214. Maillo M, Aguilar MB, Lopez-Vera E, et al. Conorfamide, A Conus Venom Peptide Belonging To The Rfamide Family Of Neuropeptides. Toxicon 2002; 40(4): 401-7.
215. Drane SB, Robinson SD, MacRaild CA, et al. Structure And Activity Of Contryphan-Vc2: Importance Of The D-Amino Acid Residue. Toxicon 2017; 129: 113-22.
216. Sonti R, Gowd KH, Rao KN, et al. Conformational Diversity In Contryphans From Conus Venom: Cis-Trans Isomerisation And Aromatic/Proline Interactions In The 23-Membered Ring Of A 7-Residue Peptide Disulfide Loop. Chem Eur J 2013; 19(45): 15175-89.
217. Robinson SD, Chhabra S, Belgi A, et al. A Naturally Occurring Peptide With An Elementary Single Disulfide-Directed β-hairpin Fold. Structure 2016; 24(2): 293-9.
218. Balsara R, Li N, Weber-Adrian D, et al. Opposing Action Of Conantokin-G On Synaptically And Extrasynaptically-Activated NMDA Receptors. Neuropharmacology 2012; 62(7): 2227-38.
219. Warder SE, Blandl T, Klein RC, et al. Amino Acid Determinants For NMDA Receptor Inhibition By Conantokin-T. J Neurochem 2001; 77(3): 812-22.
220. Imperial JS, Watkins M, Chen P, et al. The Augertoxins: Biochemical Characterization Of Venom Com Ponents From The Toxoglossate Gastropod Terebra subulata. Toxicon 2003; 42(4): 391-8.
221. Imperial JS, Kantor Y, Watkins M, et al. Venomous Auger Snail Hastula (Impages) Hec tica (Linnaeus, 1758): Molecular Phylogeny, Foregut Anatomy And Comparative Toxinology. J Exp Zool B Mol Dev Evol 2007; 308(6): 744-56.
222. López-Vera E, De La Cotera EPH, Maillo M, et al. A Novel Structural Class Of Toxins: The Methionine-Rich Peptides From The Venoms Of Turrid Marine Snails (Mollusca, Conoidea). Toxicon 2004; 43(4): 365-74.
223. Heralde FM 3rd, Imperial J, Bandyopadhyay PK, et al. A Rapidly Diverging Superfamily Of Peptide Toxins In Venomous Gemmula Species. Toxicon 2008; 51(5): 890-7.
224. Cabang AB, Imperial JS, Gajewiak J, et al. Characterization Of A Venom Peptide From A Crassispirid Gastropod. Toxicon 2011; 58(8): 672-80.
225. Puillandre N, Meyer CP, Bouchet P, et al. Genetic Divergence And Geographic Variation In The Deep-Water Conus orbignyi Complex (Mollusca: Conoidea). Zool Scr 2011; 40(4): 350-63.
226. Taylor JD, Kantor YI, Sysoev AV. Foregut Anatomy, Feeding Mecha Nisms, Relationships And Classification Of The Conoidea (=Toxo Glossa) (Gastropoda). Bull Nat Hist Museum Zool S 1993; 59(2): 125-70.
227. Safavi-Hemami H, Gajewiak J, Karanth S, et al. Specialized Insulin Is Used For Chemical Warfare By Fish-Hunting Cone Snails. Proc Natl Acad Sci USA 2015; 112(6): 1743-8.
228. Robinson SD, Safavi-Hemami H. Insulin As A Weapon. Toxicon 2016; 123: 56-61.
229. Menting JG, Gajewiak J, MacRaild CA, et al. A Minimized Human Insulin-Receptor-Binding Motif Revealed In A Conus geographus Venom Insulin. Nat Struct Mol Biol 2016; 23(10): 916-20.
230. Ahorukomeye P, Disotuar MM, Gajewiak J, et al. Fish-Hunting Cone Snail Venoms Are A Rich Source Of Minimized Ligands Of The Vertebrate Insulin Receptor. Elife 2019; 8: e41574.
231. Menting JG, Whittaker J, Margetts MB, et al. How Insulin Engages Its Primary Binding Site On The Insulin Receptor. Nature 2013; 493(7431): 241-5.
232. Campos-Lira E, Carrillo E, Aguilar MB, et al. Conorfamide-Sr3, A Structurally Novel Specific Inhibitor Of The Shaker K+ Channel. Toxicon 2017; 138: 53-8.
233. Jin AH, Cristofori-Armstrong B, Rash LD, et al. Novel Conorfamides From Conus austini Venom Modulate Both Nicotinic Acetylcholine Receptors And Acid-Sensing Ion Channels. Biochem Pharmacol 2019; 164: 342-8.
234. Aguilar MB, Luna-Ramírez KS, Echeverría D, et al. Conorfamide-Sr2, A GammaCarboxyglutamate-Containing FmrfamideRelated Peptide From The Venom Of Conus spurius With Activity In Mice And Mollusks. Peptides 2008; 29(2): 186-95.
235. López-Vera E, Aguilar MB, De La Cotera EPH. FMRFamide And Related Peptides In The Phylum mollusca. Peptides 2008; 29(2): 310-7.
236. Lee H, Wang H, Jen JC, et al. A Novel Mutation In KCNA1 Causes Episodic Ataxia Without Myokymia. Hum Mutat 2004; 24(6): 536.
237. Frolov RV, Bagati A, Casino B, et al. Potassium Channels In Drosophila: Historical Breakthroughs, Significance, And Perspectives. J Neurogenet 2012; 26(3-4): 275-90.
238. Martel P, Leo D, Fulton S, et al. Role Of Kv1 Potassium ChannelsIn Regulating Dopamine Release And Presynaptic D2 Receptor Function. PLoS ONE 2011; 6(5): e20402.
239. Ding H, Deng EZ, Yuan LF, et al. iCTX-Type: A Sequence-Based Predictor For Identifying The Types Of Conotoxins In Targeting Ion Channels. Biomed Res Int 2014; 2014: 286419.
240. Suzuki S, Baba A, Kaida K, et al. Cardiac Involvements In Myasthenia Gravis Associated With Anti-Kv1.4 Antibodies. Eur J Neurol 2014; 21(2): 223-30.
241. Sudarslal S, Singaravadivelan G, Ramasamy P, et al. A Novel 13 Residue Acyclic Peptide From The Marine Snail, Conus monile, Targets Potassium Channels. Biochem Biophys Res Commun 2004; 317(3): 682-8.
242. Mahdavi S, Kuyucak S. Why The Drosophila Shaker K+ Channel Is Not A Good Model For Ligand Binding To Voltage-Gated Kv1 Channels. Biochemistry 2013; 52(9): 1631-40.
243. Al-Sabi A, Lennartz D, Ferber M, et al. kM-Conotoxin RIIIK, Structural And Functional Novelty In A K+ Channel Antagonist. Biochemistry 2004; 43(27): 8625-35.
244. Robinson SD, Safavi-Hemami H, Raghuraman S, et al. Discovery By Proteogenomics Andcharacterization Of An RF-Amide Neuropeptide From Cone Snail Venom. J Proteomics 2015; 114: 38-47.
245. Reimers C, Lee CH, Kalbacher H, et al. Identification Of A Cono-Rfamide From The Venom Of Conus textile That Targets ASIC3 And Enhances Muscle Pain. Proc Natl Acad Sci USA 2017; 114(17): E3507-15.
246. Escoubas P, De Weille JR, Lecoq A, et al. Isolation Of A Tarantula Toxin Specific For A Class Of Proton-Gated Na+ Channels. J Biol Chem 2000; 275(33): 25116-21.
247. Diochot S, Baron A, Rash LD, et al. A New Sea Anemone Peptide, Apetx2, Inhibits ASIC3, A Major Acid-Sensitive Channel In Sensory Neurons. EMBO J 2004; 23(7): 1516-25.
248. Bohlen CJ, Chesler AT, Sharif-Naeini R, et al. A Heteromeric Texas Coral Snake Toxin Targets Acidsensing Ion Channels To Produce Pain. Nature 2011; 479: 410-14.
249. Diochot S, Baron A, Salinas M, et al. Black Mamba Venom Peptides Target Acid-Sensing Ion Channels To Abolish Pain. Nature 2012; 490: 552-5.
250. Jin AH, Dekan Z, Smout MJ, et al. Conotoxin φ-MiXXVIIA From The Superfamily G2 Employs A Novel Cysteine Framework That Mimics Granulin And Displays Anti-Apoptotic Activity. Angew Int Ed Chem 2017; 56(47): 14973-6.
251. Smout MJ, Mulvenna JP, Jones MK, et al. Expression, Refolding And Purification Of Ov-GRN-1, A Granulin-Like Growth Factor From The Carcinogenic Liver Fluke, That Causes Proliferation Of Mammalian Host Cells. Protein Expr Purif 2011; 79(2): 263-70.
252. Nielsen LD, Foged MM, Albert A, et al. The Three-Dimensional Structure Of An HSuperfamily Conotoxin Reveals A Granulin Fold Arising From A Common ICK Cysteine Framework. J Biol Chem 2019; 294(22): 8745-59.
253. Imperial JS, Chen P, Sporning A, et al. Tyrosine-rich Conopeptides Affect Voltagegated K+ Channels. J Biol Chem 2008; 283(34): 23026-32.
254. Calvete JJ. Venomics: Integrative Venom Proteomics And Beyond. Biochem J 2017; 474(5): 611-34.
255. Oldrati V, Arrell M, Violette A, et al. Advances In Venomics. Mol Biosyst 2016; 12(12): 3530-43.
256. Dutt M, Dutertre S, Jin AH, et al. Venomics Reveals Venom Complexity Of The Piscivorous Cone Snail Conus tulipa. Mar Drugs 2019; 17(1): 71.
257. Gao C, Peng C, Yang J, et al. Cone Snails: A Big Store Of Conotoxins For Novel Drug Discovery. Toxins 2017; 9(12): 397.
258. Mardis ER. DNA Sequencing Technologies: 2006−2016. Nat Protoc 2017; 12(2): 213-8.
259. Pi C, Liu Y, Peng C, et al. Analysis Of Expressed Sequence Tags From Venom Ducts Of Conus striatus: Focusing On The Expression Profile Of Conotoxins. Biochimie 2006; 88(2): 131-40.
260. Hu H, Bandyopadhyay PK, Olivera BM, et al. Elucidation Of The Molecular Envenomation Strategy Of The Cone Snail Conus geographus Through Transcriptome Sequencing Of Its Venom Duct. BMC Genomics 2012; 13: 284.
261. Robinson SD, Li Q, Lu A, et al. The Venom Repertoire Of Conus gloriamaris (Chemnitz, 1777), The Glory Of The Sea. Mar Drugs 2017; 15(5): 145.
262. Jin AH, Dutertre S, Dutt M, et al. Transcriptomic-Proteomic Correlation In The Predation-Evoked Venom Of The Cone Snail Conus imperialis. Mar Drugs 2019; 17(3): 177.
263. Wilson D, Daly NL. Nuclear Magnetic Resonance Seq (NMRseq): A New Approach To Peptide Sequence Tags. Toxins 2018; 10(11): 437.
264. Vetter I, Davis JL, Rash LD, et al. Venomics: A New Paradigm For Natural Products-Based Drug Discovery. Amino Acids 2011; 40(1): 15-28.
265. Prashanth JR, Lewis RJ. An Efficient Transcriptome Analysis Pipeline To Accelerate Venom Peptide Discovery And Characterisation. Toxicon 2015; 107(Pt B): 282-9.
266. Lavergne V, Dutertre S, Jin AH, et al. Systematic Interrogation Of The Conus marmoreus Venom Duct Transcriptome With Conosorter Reveals 158 Novel Conotoxins And 13 New Gene Superfamilies. BMC Genomics 2013; 14: 708.
267. Koua D, Brauer A, Laht S, et al. Conodictor: A Tool For Prediction Of Conopeptide Superfamilies. Nucleic Acids Res 2012; 40(W1): W238-41.
268. Mondal S, Bhavna R, Mohan Babu R, et al. Pseudo Amino Acid Composition And Multi-Class Support Vector Machines Approach For Conotoxin Superfamily Classification. J Theor Biol 2006; 243(2): 252-60.
269. Fan YX, Song J, Shen HB, et al. PredCSF: An Integrated Feature-Based Approach For Predicting Conotoxin Superfamily. Protein Pept Lett 2011; 18(3): 261-7.
270. Yin JB, Fan YX, Shen HB. Conotoxin Superfamily Prediction Using Diffusion Maps Dimensionality Reduction And Subspace Classifier. Curr Protein Pept Sci 2011; 12(6): 580-8.
271. Yuan LF, Ding C, Guo SH, et al. Prediction Of The Types Of Ion Channel-Targeted Conotoxins Based On Radial Basis Function Network. Toxicol In Vitro 2013; 27(2): 852-6.
272. Li Q, Watkins M, Robinson SD, et al. Discovery Of Novel Conotoxin Candidates Using Machine Learning. Toxins 2018; 10(12): 503.

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian South Medical Journal

Designed & Developed by: Yektaweb