:: Volume 19, Issue 4 (Iranian South Medical Journal 2016) ::
Iran South Med J 2016, 19(4): 526-535 Back to browse issues page
Effects of ethanol extracts in licorice root (Glycyrrhiza glabra L.) on activity of liver enzymes in normal and alloxan-induced diabetic rats
Akram Eidi 1, Zohreh Nateghi2, Pezhman Mortazavi3, Jalal Zarringhalam Moghadam4
1- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran , eidi@srbiau.ac.ir
2- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
3- Department of Pathology, Faculty of Specialized veterinary sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
4- Department of Physiology, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Abstract:   (4871 Views)

Background: Licorice (Glycyrrhiza glabra L., Fabaceae) is a well-known herb that it used in traditional medicine due to pharmacological activities. Licorice in herbal medicine is used as a tonic, expectorant and demulcent factor. This plant has antioxidant, immunostimulant, anti-allergenic and anti-ulcer activities. The aim of present study was to, comparisons of effect of ethanol extracts licorice root with glibenclamide on activity of liver enzymes in normal and alloxan-induced diabetic rats.

Materials and Methods: In the present study, oral administration of licorice extract (50, 200 and 400 mg/kg per body wt.) and glibenclamide (600 µg/kg) were performed as the standard antidiabetic medicine, during 30 days. Then, the activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in normal and diabetic rats were evaluated. Data were analyzed by using SPSS-10 software and the ANOVA test was used.

Results: Oral administrations of licorice extract significantly decreased activity of AST and ALT in serum of diabetic rats but not in normal rats. The licorice extract as same as glibenclamide significantly decreased activity of liver enzymes.

Conclusion: It is concluded that the licorice can be considered as a suitable candidate for future studies on diabetes mellitus.

Keywords: Liquorice, Glycyrrhiza glabra L., Alloxan, Diabetes, Rat
Full-Text [PDF 426 kb]   (1921 Downloads)    
Type of Study: Original | Subject: Biochemistry. Cell Biology and Genetics
Received: 2015/01/12 | Accepted: 2015/08/15 | Published: 2016/09/7
1. Jatav VS, Singh SK, Khatri P, et al. Recent pharmacological trends of Glycyrrhiza glabra Linn. Int J Pharm Fron Res 2011; 1: 170-85. [Google Scholar]
2. Rastogi R, Mehrotra B. Compendium of Indian medicinal plants. Centr Drug Res Ins 1990; 6: 395-8. [Google Scholar]
3. Ikeda T, Yokomizo K, Okawa M, et al. Antiherpes virus type 1 activity of oleanane-type triterpenoids. Biol Pharm Bull 2005; 28(9): 1779-81. [PubMed] [Google Scholar]
4. Washington DC. Food chemicals. Codex. 5th ed. National Academy Press, 2003, 25.
5. Shirazi MH, Ranjbar R, Eshraghi S, et al. An evaluation of antibacterial activity of Glycyrrhiza glabra Linn extract on the growth of Salmonella, Shigella and ETEC E. Coli J Biol Sci 2007; 7(5): 827-9. [Google Scholar]
6. Visavadiya NP, Soni B, Dalwadi N. Evaluation of antioxidant and anti-atherogenic properties of Glycyrrhiza glabra Linn root using in vitro models. Int J Food Sci Nutr 2009; 60(2): 135-49. [PubMed] [Google Scholar]
7. Zuidhoff HW, Van Rijsbergen JM. Whitening efficacy of frequently used whitening ingredients. CosmToilet 2001; 116(1): 53-9. [Google Scholar]
8. Fatima A, Gupta VK, Luqman S, et al. Antifungal activity of Glycyrrhiza glabra Linn extracts and its active constituent glabridin. Phytother Res 2009; 23(8): 1190-203. [PubMed] [Google Scholar]
9. Kalaiarasi P, Pugalendi KV. Antihyperglycemic effect of 18 beta-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats. Eur J Pharmacol 2009; 606(1-3): 269-73. [PubMed] [Google Scholar]
10. Schwikkard S, van Heerden FR. Antimalarial activity of plant metabolites. Nat Prod Rep 2002; 19(6): 675-92. [PubMed] [Google Scholar]
11. Dhingra D, Parle M, Kulkarni SK. Memory enhancing activity of Glycyrrhiza glabra Linn in mice. J Ethnopharmacol 2004; 91(2-3): 361-5. [PubMed] [Google Scholar]
12. Nagai H, He JX, Tani T, et al. Antispasmodic activity of licochalcone A, a species-specific ingredient of Glycyrrhiza inflata roots. J Pharm Pharmacol 2007; 59(10): 1421-6. [PubMed] [Google Scholar]
13. Bafna PA, Balaraman R. Anti-ulcer and anti-oxidant activity of pepticare, a herbomineral formulation. Phytomedicine 2005; 12(4): 264-70. [PubMed] [Google Scholar]
14. Xu WY, Luo M, Li XD, et al. Hepatoprotective and antihepatocarcinogenic effects of glycyrrhizin and matrine. Chem Biol Interac 2009; 181(1): 15-9. [PubMed] [Google Scholar]
15. Ambawade SD, Kasture VS, Kasture SB. Anticonvulsant activity of roots and rhizomes of Glycyrrhiza glabra Linn. Ind J Pharmacol 2002; 34: 251-5. [Google Scholar]
16. Alonso JR. Tratado de fitofármacos Y Nutracéuticos. Barcelona: Corpus, 2004, 11-905. [Google Scholar]
17. Nakagawa K, Asami M. Effect of glycyrrhizin on hepatic lysosomal systems. Japan J Pharmacol 1981; 31(5): 849-51. [PubMed] [Google Scholar]
18. WHO. Evaluation of certain food additives. WHO Tech Rep Seri 2005; 928: 1-156.
19. American Diabetes Association. Standards of medical care in diabetes-2007. Diabetes Care 2007; 30(1): S4-S41. [PubMed] [Google Scholar]
20. Tolman KG, Fonseca V, Tan MH, et al. Narrative review: Hepatobiliary disease in type 2 diabetes mellitus. Ann Intern Med 2004; 141(12): 946-56. [PubMed] [Google Scholar]
21. Hasan FA, Owyed S. Interpretation of liver chemistry test. Bull Kuwait Inst Med Specc 2003; 2: 27-31. [Google Scholar]
22. Thapa B, Walia A. Liver function tests and their interpretation. Indian J Pediatr 2007; 74(7): 663-71. [PubMed] [Google Scholar]
23. Koyuturk M, Tunali S, Bolkent S, et al. Effect of vanadyl sulfate on liver of streptozotocin-induced diabetic rate. Biol Trace Elem Res 2005; 104(3): 233-47. [Google Scholar]
24. Manna P, Das J, Ghosh J, et al. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IkBα/NF-Kb, MAPKs, and mitochondria-dependent pathways: Prophylactic role of arjunolic acid. Free Radical Bio Med 2010; 48(11): 1456-84. [PubMed] [Google Scholar]
25. Loria P, Lonardo A, Anania F. Liver and diabetes. A vicious circle. Hepatol Res 2013; 43(1): 51-64. [PubMed] [Google Scholar]
26. Takeshita Y, Takamura T, Hamaguchi E, et al. Tumor necrosis factor-alpha-induced production of plasminogen activator inhibitor 1 and its regulation by pioglitazone and cerivastatin in a nonmalignant human hepatocyte cell line. Metabolism 2006; 55(11): 1464-72. [PubMed] [Google Scholar]
27. Estep JM, Baranova A, Hossain N, et al. Expression of cytokine signaling genes in morbidly obese patients with nonalcoholic steatohepatitis and hepatic fibrosis. Obes Surg 2009; 19(5): 617-24. [PubMed] [Google Scholar]
28. Petta S, Craxì A. Hepatocellular carcinoma and nonalcoholic fatty liver disease: from a clinical to a molecular association. Curr Pharm Des 2010; 16(6): 741-52. [PubMed] [Google Scholar]
29. Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 2010; 51(5); 1820-32. [PubMed] [Google Scholar]
30. Shih DQ, Stoffel M. Molecular etiologies of MODY and other early onset forms of diabetes. Curr Diab Rep 2002; 2(2): 125-34. [PubMed] [Google Scholar]
31. Rabbani N, Alam SS, Riaz S, et al. High dose thiamine therapy for people with type 2 diabetes and microalbuminuria: A randomized, double-blind, placebo controlled study. Diabetologia 2009; 529(2): 208-12. [PubMed] [Google Scholar]
32. Sriviasan A, Joshi LD. Effect of feeding black gram (Phaseolus mungo) on serum lipids of normal & diabetic guineapigs. Indian J Med Res 1990; 92: 383-6. [PubMed] [Google Scholar]
33. Reddy AC, Lokesh BR. Studies on spice principles as antioxidants in inhibition of lipid peroxidation of rat liver microsomes. Mol Cel Biochem 1992; 111(1-2): 117-24. [PubMed] [Google Scholar]
34. Ohrvall M, Nalsen C, Vessby B. Vitamin E improves the antioxidative capacity but not the insulin sensitivity in elderly men. Nutr Metab Cardiovase Dis 1997; 7: 9-15. [Google Scholar]
35. Rice-Evans CA, Burdon RH. Free radical damage and its control. New York: Elsevier, 1994, 46-9. [Google Scholar]
36. Gorus FK, Malaisse WJ, Pipeleers DG. Selective uptake of alloxan pancreatic B-cells. Biochem J 1982; 208(2): 513-5. [PubMed] [Google Scholar]
37. Lenzen S. The mechanisms of alloxan and streptozotocin-induced diabete. Diabetologia 2008; 51(2): 216-26. [PubMed] [Google Scholar]
38. Elsner M, Gurgul-Convey E, Lenzen S. Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin producing cells. Free Radic Biol Med 2006; 41(5): 825-34. [PubMed] [Google Scholar]
39. Zhang X, Liang W, Mao Y, et al. Hepatic glucokinase activity is the primary defect in alloxan-induced diabetes of mice. Biomed Pharmacother 2009; 63(3): 180-6. [PubMed] [Google Scholar]
40. Lenzen S. The mechanisms of alloxan and streptozotocin-induced diabetes. Diabetologia 2008; 51(2): 216-26. [PubMed] [Google Scholar]
41. Saleem M, Mohammad A, Al-Tameemi JA, et al. Biological study of the effect of licorice roots extract on serum lipid profile, liver enzymes and kidney function tests in albino mice. African J Biotech 2011; 10(59): 12702-6. [Google Scholar]
42. Tamir S, Eisenburg J, Somjen D, et al. Estrogen-like activity of glabrene and other constituents isolated from licorice root. J Steroid Biochem Mol Biol 2000; 78(3): 291-8. [PubMed] [Google Scholar]
43. Cazarolli LH, Zanatta l, Jorge AP, et al. Follow-up study on glycosylated flavonoids and their complexes with vanadium: Their anti–hyperglycemic potential role in diabetic. Chem Biol Interact 2005; 163(3): 177-91. [PubMed] [Google Scholar]
44. Maurya SK, Raj K, Srivastava AK. Antidyslipidaemic activity of Glycyrrhiza glabra in high fructose diet induced dyslipidemic Syrian golden hamsters. Indian J Clin Biochem 2009; 24(4): 404-9. [Google Scholar]
45. Poy YH, Lee TC, Logendra L, et al. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem 2004; 85(1): 19-26. [Google Scholar]
46. Chattopadahyay RR. Possible mechanism of hepatoprotective of Azadiraachta indica leaf extract: Part II. J Ethnopharmacol 2003; 89(2-3): 217-9. [PubMed] [Google Scholar]
47. Jamshidzadeh A, Niknahad H. Hepatoprotective activity of Berberis integerrima Bge extract in rats treated with CCl4: In vitro and in vivo studies. Toxicol Lett 2006; 164: S310. [Google Scholar]
48. Zarei A, Changizi Ashtiyani S, Taheri S. The effects of hydroalcoholic extract of Portulaca oleracea on the serum concentreation of hepatic enzymes in Rats. Iran South Med J 2014; 17(5): 889-99. (Persian) [Google Scholar]
49. Mirzaei A, Mirzaei N, Mirzaei M, et al. Hepatoprotectivitve effect of Iranian grape seed and Jaft (a part of oak fruit) extracts against CCl4 induced-liver toxicity in rats. Iran South Med J 2011; 14(4): 230-9. (Persian) [Google Scholar]

XML   Persian Abstract   Print

Volume 19, Issue 4 (Iranian South Medical Journal 2016) Back to browse issues page