[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 24, Issue 4 (Iranian South Medical Journal 2021) ::
Iran South Med J 2021, 24(4): 341-434 Back to browse issues page
Sea God- Sponges: Toxins and Secondary Metabolites
Neda Baghban1 , Gholam Hossien Mohebbi1, Masoud Zarea1, Iraj Nabipour 2
1- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
2- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , inabipour@gmail.com
Abstract:   (1023 Views)
Background:: Sponges produce a wide range of toxins and secondary metabolites. The deadly poisons of some of them contain the strongest toxins known in nature and complex mixtures of bioactive compounds with different chemical structures. One of the aims of this systematic review study is to study the toxinology of sea sponges as well as toxins and bioactive compounds and their functional mechanisms.
Materials and Methods: To find studies on the toxicology of sea sponges and their bioactive compounds, in April 2021, the keywords of "toxinology, toxin, secondary metabolite, alkaloid, peptide, terpene, aromatic, steroid and lactone" along with the word "sponge" or "Porifra" were searched through the Google Scholar and Pubmed databases, from 2017 to 2021. After initial reviews based on the purpose of the study, 184 out of 211 articles were selected. The search for “Porifra” and the abovementioned compounds did not yield any results. Since the limited number of studies on sponge toxins were found in the initial search, the keywords "sponge and toxin" were
re-searched between 1980 and 2021 in the Pubmed database, Scifinder (database of chemical compounds) and the Marin Lit Database (marine natural compounds research), and after omitting the duplicate articles, a total of 27 other related articles were selected and reviewed along with other selected articles.
Results: Some toxins and main compounds isolated from different sea sponges, including different chemical groups such as okadaic acid; terpene derivatives such as agelasine, oxofasciospongia, dysivillosins, and hipposponlachnins; peptides such as polytheonamides, soritesidines, and scleritodermins; many different alkaloid compounds include guanidine alkaloids such as monanchocidins, mycalins, crambescidins, unguiculins,
netamines, zarzissine, hachijodines; Acridine alkaloids such as amphimedines; bromine and bromotyrosine alkaloids such as aplysinins; benzonaphthryidine derivatives such as aaptamines; imidazole derivatives such as nonamidines; indole derivatives such as fascaplysins, dragmacidins and topsentins; piperidine alkaloids such as saraines, madangamines, haliclonacyclamines, and arenosclerins; pyrimidine alkaloids such as lanesoic acid, 
hyrtinadine, and variolins; pyridine alkaloids such as amphimedosides and pyrinadines; pyrrole and pyrroloiminoquinoline alkaloids such as makaluvamine, discorhabdins, tsitsikammamines and batzellines; pyrrole compounds such as hymenialdisines as well as quinoline alkaloids such as araguspongines, renieramycins, renierol and lihouidine; steroid compounds such as plakinamines; lactones such as thorectandrols, palauolol, koshikamides, petrosaspongias, latrunculins and other compounds with unique structure and biological effects.
Conclusion: There is a great variety of toxins and bioactive molecules in different species of sea sponges that offer a wide range of amazing pharmacological and biological activities.
Keywords: Sea sponge, toxin, secondary metabolite, mechanism of action, pharmacological effects
Full-Text [PDF 3849 kb]   (282 Downloads)    
Type of Study: Review | Subject: Pharmacology
Received: 2021/04/9 | Accepted: 2021/08/23 | Published: 2021/10/30
1. Müller WE. Origin Of Metazoa: Sponges As Living Fossils. Naturwissenschaften 1998; 85(1): 11- 25.
2. Borchiellini C, Manuel M, Alivon E, et al. Sponge Paraphyly And The Origin Of Metazoa. J Evol Biol 2001; 14(1): 171-9.
3. Hooper JN, Van Soest RW. Systema Porifera. A Guide To The Classification Of Sponges. The End Of Begning. Boll Mus Ist Biol Univ Genova 2004; 68: 19-38.
4. Morrow C, Cárdenas P. Proposal For A Revised Classification Of The Demospongiae (Porifera). Front Zool 2015; 12: 7.
5. Sagar S, Kaur M, Minneman KP. Antiviral Lead Compounds From Marine Sponges. Mar Drugs 2010; 8(10): 2619-38.
6. Müller WE, Böhm M, Batel R, et al. Application Of Cell Culture For The Production Of Bioactive Compounds From Sponges: Synthesis Of Avarol By Primmorphs From Dysidea avara. J Nat Prod 2000; 63(8): 1077-81.
7. Müller WE, Grebenjuk VA, Le Pennec G, et al. Sustainable Production Of Bioactive Compounds By Sponges—Cell Culture And Gene Cluster Approach: A Review. Mar Biotechnol 2004; 6(2): 105-17.
8. Proksch P. Defensive Roles For Secondary Metabolites From Marine Sponges And Sponge-Feeding Nudibranchs. Toxicon 1994; 32(6): 639-55.
9. Mohebbi GH, Nabipour I, Vazirizadeh A. The Sea, the Future Pharmacy. Iran South Med J 2014; 17(4): 748-88. (Persian)
10. Sipkema D, Franssen MC, Osinga R, et al. Marine Sponges As Pharmacy. Mar Biotechnol 2005; 7(3): 142-62.
11. Bakus GJ, Green G. Toxicity In Sponges And Holothurians: A Geographic Pattern. Science 1974; 185(4155): 951-3.
12. Gross M. Magical Mysteries Of Marine Sponges. Curr Biol 2021; 31(2): R51-4.
13. Lavrov AI, Kosevich IA. Stolonial Movement: A New Type Of Whole-Organism Behavior In Porifera. Biol Bull 2018; 234(1): 58-67.
14. Ereskovsky A, Lavrov A. Porifera. Invertebrate Histology, 2021, 19-54.
15. Renard E, Gazave E, Fierro-Constain L, et al. Porifera (Sponges): Recent Knowledge and New Perspectives. eLS, John Wiley & Sons, Ltd, 2013.
16. Godefroy N, Le Goff E, Martinand-Mari C, et al. Sponge Digestive System Diversity And Evolution: Filter Feeding To Carnivory. Cell Tissue Res 2019; 377(3): 341-51.
17. Maldonado M, Zhang X, Cao X, et al. Selective Feeding By Sponges On Pathogenic Microbes: A Reassessment Of Potential For Abatement Of Microbial Pollution. Mar Ecol Prog Ser 2010; 403: 75-89.
18. Ruppert EE, Barnes RD, Fox RS. Invertebrate Zoology: A Functional Evolutionary Approach. 7 th ed. Thomson-Brooks/Cole, 2004.
19. Becerro MA, Turon X, Uriz MJ. Natural Variation Of Toxicity In Encrusting Sponge Crambe Crambe (Schmidt) In Relation To Size And Environment. J Chem Ecol 1995; 21(12): 1931-46.
20. Turon X, Becerro MA, Uriz MJ. Seasonal Patterns Of Toxicity In Benthic Invertebrates: The Encrusting Sponge Crambe crambe (Poecilosclerida). Oikos 1996; 75(1): 33-40.
21. Andavan GSB, Lemmens-Gruber R. Cyclodepsipeptides From Marine Sponges: Natural Agents For Drug Research. Mar Drugs 2010; 8(3): 810-34.
22. Mehbub MF, Lei J, Franco C, et al. Marine Sponge Derived Natural Products Between 2001 And 2010: Trends And Opportunities For Discovery Of Bioactives. Mar Drugs 2014; 12(8): 4539-77.
23. Zhang W, Zhang X, Cao X, et al. Optimizing The Formation Of In Vitro Sponge Primmorphs From The Chinese Sponge Stylotella agminata (Ridley). J Biotechnol 2003; 100(2): 161-8.
24. Belarbi EH, Gomez AC, Chisti Y, et al. Producing Drugs From Marine Sponges. Biotechnol Adv 2003; 21(7): 585-98.
25. Dembitsky VM, Gloriozova TA, Poroikov VV. Novel Antitumor Agents: Marine Sponge Alkaloids, Their Synthetic Analogs And Derivatives. Mini Rev Med Chem 2005; 5(3): 319-36.
26. Zhang H, Zhao Z, Wang H. Cytotoxic Natural Products From Marine Sponge-Derived Microorganisms. Mar Drugs 2017; 15(3): 68.
27. Faulkner DJ. Marine Natural Products. Nat Prod Rep 2000; 17(1): 7-55.
28. Lopez JV. The Perfect Microbial Symbiosis Hotel: Marine Sponges. ISS Symbiosis International: The Voice Of The International Symbiosis Society 2004; (8): 2.
29. Kelman D, Kashman Y, Rosenberg E, et al. Antimicrobial Activity Of The Reef Sponge Amphimedon Viridis From The Red Sea: Evidence For Selective Toxicity. Aquat Microb Ecol 2001; 24(1): 9-16.
30. Rützler K. The Role Of Burrowing Sponges In Bioerosion. Oecologia 1975; 19(3): 203-16.
31. Warburton FE. The Manner In Which The Sponge Cliona Bores In Calcareous Objects. Can J Zool 1958; 36(4): 555-62.
32. Hultgren KM, Duffy JE. Sponge Host Characteristics Shape The Community Structure Of Their Shrimp Associates. Mar Ecol Prog Ser 2010; 407: 1-12.
33. Carroll AR, Copp BR, Davis RA, et al. Marine Natural Products. Nat Prod Rep 2020; 37(2): 175-223.
34. Boehm M, Hentschel U, Friedrich A, et al. Molecular Response Of The Sponge Suberites domuncula To Bacterial Infection. Mar Biol 2001; 139: 1037-45.
35. Thakur NL, Müller WE. Biotechnological Potential Of Marine Sponges. Curr Sci 2004; 86(11): 1506-12.
36. Tachibana K, Scheuer PJ, Tsukitani Y, et al. Okadaic Acid, A Cytotoxic Polyether From Two Marine Sponges Of The Genus Halichondria. J Am Chem Soc 1981; 103(9): 2469-71.
37. Egmond HP. Marine biotoxins. Food & Agriculture Org, 2004.
38. Reboreda A, Lago J, Chapela MJ, et al. Decrease Of Marine Toxin Content In Bivalves By Industrial Processes. Toxicon 2010; 55(2-3): 235-43.
39. Mohebbi GH, Nabipour I, Vazirizadeh A. Neurotoxic Syndromes In Marine Poisonings A Review. Iran South Med J 2014; 17(3): 451-75. (Persian)
40. Aune T, Larsen S, Aasen JA, et al. Relative Toxicity Of Dinophysistoxin-2 (DTX-2) Compared With Okadaic Acid, Based On Acute Intraperitoneal Toxicity In Mice. Toxicon 2007; 49(1): 1-7.
41. EU/SANCO. Report Of The Meeting Of The Working Group On Toxicology Of DSP and AZP. Brussels, 21 to 23rd May, 2001.
42. Yasumoto T, Oshima Y, Yamaguchi M. Occurrence Of A New Type Of Shellfish Poisoning In The Tohoku District. Nippon Suisan Gakk 1978; 44(11): 1249-55.
43. Kat M. The Occurrence Of Prorocentrum Species And Coincidental Gastrointestinal Illness Of Mussel Consumers. Toxic Dinoflag Blooms 1979; 215-20.
44. Bialojan C, Takai A. Inhibitory Effect Of A Marine-Sponge Toxin, Okadaic Acid, On Protein Phosphatases. Specificity And Kinetics. Biochem J 1988; 256(1): 283-90.
45. Louzao MC, Vieytes MR, Botana LM. Effect Of Okadaic Acid On Glucose Regulation. Mini Rev Med Chem 2005; 5(2): 207-15.
46. Takai A, Murata M, Torigoe K, et al. Inhibitory Effect Of Okadaic Acid Derivatives On Protein Phosphatases. A Study On Structure-Affinity Relationship. Biochem J 1992; 284(2): 539-44.
47. Cruz PG, Fernandez JJ, Norte M, et al. Belizeanic Acid: A Potent Protein Phosphatase 1 Inhibitor Belonging To The Okadaic Acid Class, With An Unusual Skeleton. Chem Eur J 2008; 14(23): 6948-56.
48. Fernández-Sánchez MT, Cabrera-García D, Ferrero-Gutierrez A, et al. Comparative Toxicological Study Of The Novel Protein Phosphatase Inhibitor 19-Epi-Okadaic Acid In Primary Cultures Of Rat Cerebellar Cells. Toxicol Sci 2013; 132(2): 409-18.
49. Valdiglesias V, Prego-Faraldo MV, Pásaro E, et al. Okadaic Acid: More Than A Diarrheic Toxin. Mar Drugs 2013; 11(11): 4328-49.
50. European Commission. Regulation (EC) No 853/2004 Of The European Parliament And Of The Council Of 29 April 2004 Laying Down Specific Hygiene Rules For Food Of Animal Origin. Off J Eur :union: 2004; L226: 22.
51. EFSA (European Food Safety Authority). Opinion Of The Scientific Panel On Contaminants In The Food Chain On A Request From The European Commission On Marine Biotoxins In Shellfish—Okadaic Acid And Analogues. EFSA J 2008; 589: 1-62.
52. Cruz PG, Norte M, Creus AH, et al. SelfAssociation Of Okadaic Acid: Structural And Pharmacological Significance. Mar Drugs 2013; 11(6): 1866-77.
53. Paduch R, Kandefer-Szerszeń M, Trytek M, et al. Terpenes: Substances Useful In Human Healthcare. Arch Immunol Ther Exp 2007; 55(5): 315-27.
54. Eggersdorfer M. Terpenes. Ullmann's Encyclopedia Ind Chem 2000.
55. Nakamura H, Wu H, Ohizumi Y, et al. Agelasine-A,-B,-C And-D, Novel Bicyclic Diterpenoids With A 9-Methyladeninium Unit Possessing Inhibitory Effects On Na, K-Atpase From The Okinawa Sea Sponge Agelas Sp. 1. Tetrahedron Lett 1984; 25(28): 2989-92.
56. Pimentel AA, Felibertt P, Sojo F, et al. The Marine Sponge Toxin Agelasine B Increases The Intracellular Ca2+ Concentration And Induces Apoptosis In Human Breast Cancer Cells (MCF-7). Cancer Chemother Pharmacol 2012; 69(1): 71-83.
57. Kobayashi M, Nakamura H, Wu HM, et al. Mode Of Inhibition Of Brain Na+ , K+ -ATPase By Agelasidines And Agelasines From A Sea Sponge. Arch Biochem Biophys 1987; 259(1): 179-84.
58. Arai M, Yamano Y, Setiawan A, et al. Identification Of The Target Protein Of Agelasine D, A Marine Sponge Diterpene Alkaloid, As An Anti‐Dormant Mycobacterial Substance. Chem Biochem 2014; 15(1): 117-23.
59. Stout EP, Yu LC, Molinski TF. Antifungal Diterpene Alkaloids From The Caribbean Sponge Agelas Citrina: Unified Configurational Assignments Of Agelasidines And Agelasines. Eur J Org Chem 2012; 2012(27): 5131-5.
60. Chu MJ, Tang XL, Qin GF, et al. Pyrrole Derivatives And Diterpene Alkaloids From The South China Sea Sponge Agelas nakamurai. Chem Biodivers 2017; 14(7): e1600446.
61. Yao G, Kondratyuk TP, Tan GT, et al. Bioactive Sulfated Sesterterpene Alkaloids And Sesterterpene Sulfates From The Marine Sponge Fasciospongia sp. J Nat Prod 2009; 72(2): 319-23.
62. Ciaglia E, Malfitano AM, Laezza C, et al. Immuno-Modulatory And Anti-Inflammatory Effects Of Dihydrogracilin A, A Terpene Derived From The Marine Sponge Dendrilla membranosa. Int J Mol Sci 2017; 18(8): 1643.
63. Van Kiem P, Hang DT, Nhiem NX, et al. Sesquiterpene Derivatives From Marine Sponge Smenospongia cerebriformis And Their AntiInflammatory Activity. Bioorg Med Chem Lett 2017; 27(7): 1525-9.
64. Imperatore C, Gimmelli R, Persico M, et al. Investigating the Antiparasitic Potential of the Marine Sesquiterpene Avarone, Its Reduced Form Avarol, and the Novel Semisynthetic Thiazinoquinone Analogue Thiazoavarone. Mar Drugs 2020; 18(2): 112.
65. Hamed ANES, Wätjen W, Schmitz R, et al. A New Bioactive Sesquiterpenoid Quinone From The Mediterranean Sea Marine Sponge Dysidea avara. Nat Prod Commun 2013; 8(3): 289-92.
66. Kapojos MM, Abdjul DB, Yamazaki H, et al. Protein Tyrosine Phosphatase 1B Inhibitory Polybromobiphenyl Ethers And Monocyclofarnesol-Type Sesquiterpenes From The Indonesian Marine Sponge Lamellodysidea Cf. herbacea. Phytochem Lett 2018; 24: 10-4.
67. Wang J, Mu FR, Jiao WH, et al. Meroterpenoids With Protein Tyrosine Phosphatase 1B Inhibitory Activity From A Hyrtios Sp. Marine Sponge. J Nat Prod 2017; 80(9): 2509-14.
68. Jiao WH, Cheng BH, Shi GH, et al. Dysivillosins A–D, Unusual Anti-Allergic Meroterpenoids From The Marine Sponge Dysidea villosa. Sci Rep 2017; 7: 8947.
69. Hong LL, Yu HB, Wang J, et al. Unusual Anti-Allergic Diterpenoids From The Marine Sponge Hippospongia Lachne. Sci Rep 2017; 7: 43138.
70. Li J, Yang F, Wang Z, et al. Unusual AntiInflammatory Meroterpenoids From The Marine Sponge Dactylospongia sp. Org Biomol Chem 2018; 16(36): 6773-82.
71. Li J, Wu W, Yang F, et al. Popolohuanones G–I, Dimeric Sesquiterpene Quinones With IL‐6 Inhibitory Activity From The Marine Sponge Dactylospongia elegans. Chem Biodivers 2018; 15(6): e1800078.
72. Gui YH, Jiao WH, Zhou M, et al. Septosones A–C, In Vivo Anti-Inflammatory Meroterpenoids With Rearranged Carbon Skeletons From The Marine Sponge Dysidea Septosa. Org Lett 2019; 21(3): 767-70.
73. Chen Q, Mao Q, Bao M, et al. Spongian Diterpenes Including One With A Rearranged Skeleton From The Marine Sponge Spongia officinalis. J Nat Prod 2019; 82(6): 1714-8.
74. Gui YH, Liu L, Wu W, et al. Discovery Of Nitrogenous Sesquiterpene Quinone Derivatives From Sponge Dysidea septosa With AntiInflammatory Activity In Vivo Zebrafish Model. Bioorg Chem 2020; 94: 103435.
75. Luo X, Wang Q, Tang X, et al. Cytotoxic Manoalide-Type Sesterterpenes from the Sponge Luffariella variabilis Collected in the South China Sea. J Nat Prod 2021; 84(1): 61-70.
76. Tai CJ, Huang CY, Ahmed AF, et al. An Anti-Inflammatory 2, 4-Cyclized-3, 4-Secospongian Diterpenoid And Furanoterpene-Related Metabolites Of A Marine Sponge Spongia Sp. From The Red Sea. Mar Drugs 2021; 19(1): 38.
77. Costa M, Fernández R, Pérez M, et al. Two New Spongian Diterpene Analogues Isolated From The Marine Sponge Acanthodendrilla sp. Nat Prod Res 2020; 34(8): 1053-60.
78. Hong LL, Sun JB, Yang F, et al. New Diterpene Alkaloids From The Marine Sponge Agelas mauritiana. RSC Adv 2017; 7(39): 23970-6.
79. Yamazaki H, Kanno SI, Abdjul DB, et al. A Bromopyrrole-Containing Diterpene Alkaloid From The Okinawan Marine Sponge Agelas Nakamurai Activates The Insulin Pathway In Huh-7 Human Hepatoma Cells By Inhibiting Protein Tyrosine Phosphatase 1B. Bioorg Med Chem Lett 2017; 27(10): 2207-9.
80. Choi C, Cho Y, Son A, et al. Therapeutic Potential of (−)-Agelamide D, a Diterpene Alkaloid from the Marine Sponge Agelas sp., as a Natural Radiosensitizer in Hepatocellular Carcinoma Models. Mar Drugs 2020; 18(10): 500.
81. Lee S, Tanaka N, Kobayashi J, et al. Agelamasines A And B, Diterpene Alkaloids From An Okinawan Marine Sponge Agelas sp. J Nat Med 2018; 72(1): 364-8.
82. Li XW, Chen SH, Ye F, et al. Axiriabilines AD, Uncommon Nitrogenous Eudesmane-Type Sesquiterpenes From The Hainan Sponge Axinyssa variabilis. Tetrahedron 2017; 73(34): 5239-43.
83. Zhang X, Li PL, Qin GF, et al. Isolation and Absolute Configurations of Diversiform C17, C21 and C25 Terpenoids from the Marine Sponge Cacospongia sp. Mar Drugs 2019; 17(1): 14.
84. Khushi S, Nahar L, Salim AA, et al. Cacolides: Sesterterpene Butenolides from a Southern Australian Marine Sponge, Cacospongia sp. Mar Drugs 2018; 16(11): 456.
85. Kurnianda V, Faradilla S, Karina S, et al. Polyoxygenated Diterpene Produced by The Indonesian Marine Sponge Callyspongiasp. as an Inhibitor of the Human Pancreatic Cancer Cells. Microbiol Indones 2019; 13(2): 70-4.
86. De Oliveira JAM, Williams DE, Bonnett S, et al. Diterpenoids Isolated From The Samoan Marine Sponge Chelonaplysilla Sp. Inhibit Mycobacterium tuberculosis Growth. J Antibiot 2020; 73: 568-73.
87. Balansa W, Mettal U, Wuisan ZG, et al. A New Sesquiterpenoid Aminoquinone From An Indonesian Marine Sponge. Mar Drugs 2019; 17(3): 158.
88. Neupane RP, Parrish SM, Bhandari Neupane J, et al. Cytotoxic Sesquiterpenoid Quinones And Quinols, And An 11-Membered Heterocycle, Kauamide, From The Hawaiian Marine Sponge Dactylospongia elegans. Mar Drugs 2019; 17(7): 423.
89. Yu HB, Yin ZF, Gu BB, et al. Cytotoxic Meroterpenoids From The Marine Sponge Dactylospongia Elegans. Nat Prod Res 2021; 35(10): 1620-6.
90. Ebada SS, De Voogd N, Kalscheuer R, et al. Cytotoxic Drimane Meroterpenoids From The Indonesian Marine Sponge Dactylospongia elegans. Phytochem Lett 2017; 22: 154-8.
91. Yu HB, Gu BB, Wang SP, et al. New Diterpenoids From The Marine Sponge Dactylospongia elegans. Tetrahedron 2017; 73(47): 6657-61.
92. Hitora Y, Sejiyama A, Honda K, et al. Fluorescent Image-Based High-Content Screening Of Extracts Of Natural Resources For Cell Cycle Inhibitors And Identification Of A New Sesquiterpene Quinone From The Sponge, Dactylospongia metachromia. Bioorg Med Chem 2021; 31: 115968.
93. Bory A, Shilling AJ, Allen J, et al. Bioactivity Of Spongian Diterpenoid Scaffolds From The Antarctic Sponge Dendrilla antarctica. Mar Drugs 2020; 18(6): 327.
94. Shilling AJ, Witowski CG, Maschek JA, et al. Spongian Diterpenoids Derived From The Antarctic Sponge Dendrilla antarctica Are Potent Inhibitors Of The Leishmania Parasite. J Nat Prod 2020; 83(5): 1553-62.
95. Hayton JB, Grant GD, Carroll AR. Three New Spongian Diterpenes From The Marine Sponge Dendrilla Rosea. Aust J Chem 2019; 72(12): 964-8.
96. Jiao WH, Li J, Wang D, et al. Cinerols, Nitrogenous Meroterpenoids From The Marine Sponge Dysidea cinerea. J Nat Prod 2019; 82(9): 2586-93.
97. Jiao WH, Xu QH, Cui J, et al. Spiroetherones A And B, Sesquiterpene Naphthoquinones, As Angiogenesis Inhibitors From The Marine Sponge Dysidea etheria. Org Chem Front 2020; 7(2): 368-73.
98. Wang Q, Sun Y, Yang L, et al. Bishomoscalarane Sesterterpenoids From The Sponge Dysidea granulosa Collected In The South China Sea. J Nat Prod 2020; 83(2): 516-23.
99. Luo X, Li P, Wang K, et al. Cytotoxic Sesquiterpenoid Quinones From South China Sea Sponge Dysidea sp. Nat Prod Res 2021; 35(17): 2866-71.
100. Khushi S, Salim AA, Elbanna AH, et al. Dysidealactams and Dysidealactones: Sesquiterpene Glycinyl-Lactams, Imides, and Lactones from a Dysidea sp. Marine Sponge Collected in Southern Australia. J Nat Prod 2020; 83(5): 1577-84.
101. Antonov AS, Kalinovsky AI, Afiyatullov SS, et al. Erylosides F8, V1–V3, And W–W2–New Triterpene Oligoglycosides From The Carribean Sponge Erylus goffrilleri. Carbohydr Res 2017; 449: 153-9.
102. Gu BB, Wu W, Liu LY, et al. 3,5‐Dimethylorsellinic Acid Derived Meroterpenoids From Eupenicillium Sp. 6A‐9, A Fungus Isolated From The Marine Sponge Plakortis simplex. Eur J Org Chem 2018; 2018(1): 48-59.
103. Liu N, Peng S, Yang J, et al. Structurally Diverse Sesquiterpenoids And Polyketides From A Sponge-Associated Fungus Aspergillus sydowii SCSIO41301. Fitoterapia 2019; 135: 27-32.
104. Yamada T, Fujii A, Kikuchi T. New Diterpenes With A Fused 6-5-6-6 Ring System Isolated From The Marine Sponge-Derived Fungus Trichoderma harzianum. Mar Drugs 2019; 17(8): 480.
105. Yamada T, Suzue M, Arai T, et al. Trichodermanins C–E, New Diterpenes With A Fused 6-5-6-6 Ring System Produced By A Marine Sponge-Derived Fungus. Mar Drugs 2017; 15(6): 169.
106. Tian YQ, Gu BB, Jiao WH, et al. Four Homoverrucosane-Type Diterpenes From The Marine Sponge Halichondria sp. Tetrahedron 2020; 76(50): 131697.
107. Raiju K, Hitora Y, Kato H, et al. Halichonic Acid, A New Rearranged Bisabolene-Type Sesquiterpene From A Marine Sponge Halichondria sp. Tetrahedron Lett 2019; 60(15): 1079-81.
108. Woolly EF, Singh AJ, Russell ER, et al. Hamigerans R And S: Nitrogenous Diterpenoids From The New Zealand Marine Sponge Hamigera tarangaensis. J Nat Prod 2018; 81(2): 387-93.
109. Jiao WH, Hong LL, Sun JB, et al. (±)‐Hippolide J–A Pair of Unusual Antifungal Enantiomeric Sesterterpenoids from the Marine Sponge Hippospongia Lachne. Eur J Org Chem 2017; 2017(24): 3421-6.
110. Zhou M, Peng BR, Tian W, et al. 12- Deacetyl-12-epi-Scalaradial, A Scalarane Sesterterpenoid From A Marine Sponge Hippospongia Sp., Induces Hela Cells Apoptosis Via MAPK/ERK Pathway And Modulates Nuclear Receptor Nur77. Mar Drugs 2020; 18(7): 375.
111. Ahmadi P, Haruyama T, Kobayashi N, et al. Spongian Diterpenes From The Sponge Hyattella Aff. intestinalis. Chem Pharm Bull 2017; 65(9): 874-7.
112. Fang ST, Yan BF, Yang CY, et al. Hymerhabdrin A, A Novel Diterpenoid with Antifouling Activity from the Intertidal Sponge Hymerhabdia sp. J Antibiot 2017; 70(11): 1043-6.
113. Kwon OS, Kim D, Kim CK, et al. Cytotoxic Scalarane Sesterterpenes From The Sponge Hyrtios Erectus. Mar Drugs 2020; 18(5): 253.
114. Kaweetripob W, Mahidol C, Tuntiwachwuttikul P, et al. Cytotoxic Sesterterpenes From Thai Marine Sponge Hyrtios Erectus. Mar Drugs 2018; 16(12): 474.
115. Francis P, Chakraborty K. Anti-Inflammatory Scalarane-Type Sesterterpenes, Erectascalaranes A–B, From The Marine Sponge Hyrtios erectus Attenuate Pro-Inflammatory Cyclooxygenase-2 And 5-Lipoxygenase. Med Chem Res 2021; 30: 886-96.
116. Kaweetripob W, Mahidol C, Wongbundit S, et al. Sesterterpenes And Phenolic Alkenes From The Thai Sponge Hyrtios erectus. Tetrahedron 2018; 74(2): 316-23.
117. Choi JH, Lee HS, Campos WL. Scalarane-type Sesterterpenes from the Philippines Sponge Hyrtios sp. Ocean Polar Res 2020; 42(1): 15-20.
118. Xu Wg, Wang J, Qiao W, et al. Jaspiferins H–J, New Isomalabaricane-Type Terpenoids From The South China Sea Marine Sponge Jaspis stellifera. Chem Nat Compd 2018; 54: 84-7.
119. Ohte S, Yamazaki H, Takahashi O, et al. Inhibitory Effects Of Sesquiterpene Lactones From The Indonesian Marine Sponge Lamellodysidea Cf. herbacea On Bone Morphogenetic Protein-Induced Osteoblastic Differentiation. Bioorg Med Chem Lett 2021; 35: 127783.
120. Torii M, Kato H, Hitora Y, et al. Lamellodysidines A And B, Sesquiterpenes Isolated From The Marine Sponge Lamellodysidea herbacea. J Nat Prod 2017; 80(9): 2536-41.
121. Faricha A, Ahmadi P, De Voogd NJ, et al. Two Isospongian Diterpenes From The Sponge Luffariella sp. Nat Prod Commun 2017; 12(7): 1011-2.
122. Cui J, Shang RY, Sun M, et al. Trichodermaloids A–C, Cadinane Sesquiterpenes from a Marine Sponge Symbiotic Trichoderma sp. SM16 Fungus. Chem Biodivers 2020; 17(4): e2000036.
123. Sadahiro Y, Hitora Y, Fukumoto A, et al. Melophluosides A And B, New Triterpene Galactosides From The Marine Sponge Melophlus sarasinorum. Tetrahedron Lett 2020; 61(20): 151852.
124. Yurchenko EA, Kolesnikova SA, Lyakhova EG, et al. Lanostane Triterpenoid Metabolites from a Penares sp. Marine Sponge Protect Neuro-2a Cells against Paraquat Neurotoxicity. Molecules 2020; 25(22): 5397.
125. Solanki H, Angulo-Preckler C, Calabro K, et al. Suberitane Sesterterpenoids From The Antarctic Sponge Phorbas areolatus (Thiele, 1905). Tetrahedron Lett 2018; 59(36): 3353-6.
126. Takahashi K, Ogura Y, Kuse M, et al. First Synthesis And Absolute Configuration Of Phorbasin H, A Diterpene Carboxylic Acid Isolated From The Sponge Phorbas Gukulensis. Biosci Biotechnol Biochem 2019; 83(12): 2198-201.
127. Lhullier C, De Oliveira Tabalipa E, Nienkötter Sardá F, et al. Clerodane Diterpenes from the Marine Sponge Raspailia bouryesnaultae Collected in South Brazil. Mar Drugs 2019; 17(1): 57.
128. Dung DT, Hang DTT, Nhiem NX, et al. Rhabdaprovidines D–G, Four New 6, 6, 5-Tricyclic Terpenoids from the Vietnamese Sponge Rhabdastrella providentiae. Nat Prod Commun 2018; 13(10): 1251-4.
129. Dung DT, Yen PH, Nhiem NX, et al. New Acetylated Terpenoids From Sponge Rhabdastrella providentiae Inhibit NO Production In LPS Stimulated BV2 Cells. Nat Prod Commun 2018; 13(6): 661-4.
130. Ali MS, Amina M, Al‐Lohedan HA, et al. Elucidation Of The Interaction Of Human Serum Albumin With Anti‐Cancer Sipholane Triterpenoid From The Red Sea Sponge. Luminescence 2017; 32(2): 223-30.
131. Le TH, Hang DTT, Nhiem NX, et al. Naphtoquinones And Sesquiterpene Cyclopentenones From The Sponge Smenospongia cerebriformis With Their Cytotoxic Activity. Chem Pharm Bull 2017; 65(6): 589-92.
132. Hang DTT, Nhiem NX, Tai BH, et al. Sesquiterpene Phenols From Marine Sponge Smenospongia cerebriformis. Vietnam J Chem 2017; 55(2): 148.
133. Alves AJ, Pereira JA, Dethoup T, et al. A New Meroterpene, A New Benzofuran Derivative And Other Constituents From Cultures Of The Marine Sponge-Associated Fungus Acremonium persicinum KUFA 1007 And Their Anticholinesterase Activities. Mar Drugs 2019; 17(6): 379.
134. Zhang J, Yuan B, Liu D, et al. Brasilianoids A–F, New Meroterpenoids From The Sponge-Associated Fungus Penicillium Brasilianum. Front Chem 2018; 6: 314.
135. Zhou G, Sun C, Hou X, et al. Ascandinines A–D, Indole Diterpenoids, from the SpongeDerived Fungus Aspergillus candidus HDN15-152. J Org Chem 2021; 86(3): 2431-6.
136. He WJ, Zhou XJ, Qin XC, et al. Quinone/ Hydroquinone Meroterpenoids With Antitubercular And Cytotoxic Activities Produced By The Sponge-Derived Fungus Gliomastix sp. ZSDS1-F7. Nat Prod Res 2017; 31(5): 604-9.
137. Li Y, Liu D, Cheng Z, et al. Cytotoxic Trichothecene-Type Sesquiterpenes From The Sponge-Derived Fungus Stachybotrys Chartarum With Tyrosine Kinase Inhibition. RSC Adv 2017; 7(12): 7259-67.
138. El-Desoky AH, Kato H, Tsukamoto S. Ceylonins G–I: Spongian Diterpenes From The Marine Sponge Spongia ceylonensis. J Nat Med 2017; 71(4): 765-9.
139. El-Desoky AH, Kato H, Kagiyama I, et al. Ceylonins A–F, Spongian Diterpene Derivatives That Inhibit RANKL-Induced Formation Of Multinuclear Osteoclasts, From The Marine Sponge Spongia ceylonensis. J Nat Prod 2017; 80(1): 90-5.
140. Han GY, Sun DY, Liang LF, et al. Spongian Diterpenes From Chinese Marine Sponge Spongia officinalis. Fitoterapia 2018; 127: 159-65.
141. Li J, Gu BB, Sun F, et al. Sesquiterpene Quinones/Hydroquinones From The Marine Sponge Spongia pertusa Esper. J Nat Prod 2017; 80(5): 1436-45.
142. Liang YQ, Liao XJ, Zhao BX, et al. (+)-And (−)-Spongiterpene, A Pair Of New Valerenane Sesquiterpene Enantiomers From The Marine Sponge Spongia Sp. Nat Prod Res 2021; 35(13): 2178-83.
143. Liang YQ, Liao XJ, Zhao BX, et al. Novel 3, 4-Seco-3, 19-Dinorspongian And 5, 17- Epoxy-19-Norspongian Diterpenes From The Marine Sponge Spongia sp. Org Chem Front 2020; 7(20): 3253-61.
144. Yang I, Lee J, Lee J, et al. Scalalactams A–D, Scalarane Sesterterpenes with a γ-Lactam Moiety from a Korean Spongia Sp. Marine Sponge. Molecules 2018; 23(12): 3187.
145. Phan CS, Kamada T, Hamada T, et al. Cytotoxic Sesterterpenoids From Bornean Sponge Spongia sp. Rec Nat Prod 2018; 12(6): 643-7.
146. Liang YQ, Liao XJ, Lin JL, et al. Spongiains AC: Three New Spongian Diterpenes With Ring A Rearrangement From The Marine Sponge Spongia sp. Tetrahedron 2019; 75(27): 3802-8.
147. Jomori T, Setiawan A, Sasaoka M, et al. Cytotoxicity Of New Diterpene Alkaloids, Ceylonamides GI, Isolated From Indonesian Marine Sponge Of Spongia sp. Nat Prod Commun 2019; 14(6): 1-7.
148. Elissawy AM, Ebada SS, Ashour ML, et al. Spiroarthrinols A And B, Two Novel Meroterpenoids Isolated From The SpongeDerived Fungus Arthrinium sp. Phytochem Lett 2017; 20: 246-51.
149. Nazarian M, Hosseini SJ, Nabipour I, et al. Marine Bioactive Peptides With Anti-Cancer Potential. Iran South Med J 2015; 18(3): 607-29. (Persian)
150. Gogineni V, Hamann MT. Marine Natural Product Peptides With Therapeutic Potential: Chemistry, Biosynthesis, And Pharmacology. Biochim Biophys Acta Gen Subj 2018; 1862(1): 81-196.
151. Li H, Bowling JJ, Fronczek FR, et al. Asteropsin A: An Unusual Cystine-Crosslinked Peptide From Porifera Enhances Neuronal Ca2+ Influx. Biochim Biophys Acta 2013; 1830(3): 2591-9.
152. Matsunaga S, Jimbo M, Gill MB, et al. Isolation, Amino Acid Sequence And Biological Activities Of Novel Long-Chain PolyamineAssociated Peptide Toxins From The Sponge Axinyssa aculeata. Chembiochem 2011; 12(14): 2191-200.
153. Gardères J, Bourguet-Kondracki ML, Hamer B, et al. Porifera Lectins: Diversity, Physiological Roles And Biotechnological Potential. Mar Drugs 2015; 13(8): 5059-101.
154. Mebs D, Weiler I, Heinke HF. Bioactive Proteins From Marine Sponges: Screening Of Sponge Extracts For Hemagglutinating, Hemolytic, Ichthyotoxic And Lethal Properties And Isolation And Characterization Of Hemagglutinins. Toxicon 1985; 23(6): 955-62.
155. Cheung RCF, Wong JH, Pan W, et al. Marine Lectins And Their Medicinal Applications. Appl Microbiol Biotechnol 2015; 99(9): 3755-73.
156. FitzGerald DJ, Kreitman R, Wilson W, et al. Recombinant Immunotoxins For Treating Cancer. Int J Med Microbiol 2004; 293(7-8): 577-82.
157. Prasad P, Aalbersberg W, Feussner KD, et al. Papuamides E And F, Cytotoxic Depsipeptides From The Marine Sponge Melophlus sp. Tetrahedron 2011; 67(44): 8529-31.
158. Hamada Y, Shioiri T. Recent Progress Of The Synthetic Studies Of Biologically Active Marine Cyclic Peptides And Depsipeptides. Chem Rev 2005; 105(12): 4441-82.
159. Nakazawa H, Kitano K, Cioca D, et al. Induction Of Polyploidization By Jaspamide In HL-60 Cells. Acta Haematol 2000; 104(2-3): 65-71.
160. Zampella A, Sepe V, Luciano P, et al. Homophymine A, An Anti-HIV Cyclodepsipeptide From The Sponge Homophymia sp. J Org Chem 2008; 73(14): 5319-27.
161. King G. Venoms To Drugs: Translating Venom Peptides Into Therapeutics. Aust Biochem 2013; 44(3): 13-6.
162. Ford PW, Gustafson KR, McKee TC, et al. Papuamides A− D, HIV-Inhibitory and Cytotoxic Depsipeptides from the Sponges Theonella m irabilis and Theonella s winhoei Collected in Papua New Guinea. J Am Chem Soc 1999; 121(25): 5899-909.
163. Li WL, Yi YH, Wu HM, et al. Isolation And Structure Of The Cytotoxic Cycloheptapeptide Phakellistatin 13. J Nat Prod 2003; 66(1): 146-8.
164. Riobó P, Paz B, Franco JM, et al. Mouse Bioassay For Palytoxin. Specific Symptoms And Dose-Response Against Dose–Death Time Relationships. Food Chem Toxicol 2008; 46(8): 2639-47.
165. Yokoyama A, Murata M, Oshima Y, et al. Some Chemical Properties Of Maitotoxin, A Putative Calcium Channel Agonist Isolated From A Marinedinoflagellate. J Biochem 1988; 104(2): 184-7.
166. Nagai H, Takuwa K, Nakao M, et al. Novel Proteinaceous Toxins From The Box Jellyfish (Sea Wasp) Carybdea Rastoni. Biochem Biophys Res Commun 2000; 275(2): 582-8.
167. Sakai R, Tanano K, Ono T, et al. Soritesidine, a Novel Proteinous Toxin from the Okinawan Marine Sponge Spongosorites sp. Mar Drugs 2019; 17(4): 216.
168. Hamada T, Matsunaga S, Yano G, et al. Polytheonamides A and B, Highly Cytotoxic, Linear Polypeptides With Unprecedented Structural Features, From The Marine Sponge, Theonella Swinhoei. J Am Chem Soc 2005; 127(1): 110-8.
169. Renevey A, Riniker S. The Importance Of N-Methylations For The Stability Of The β⁶·³-Helical Conformation Of Polytheonamide B. Eur Biophys J 2017; 46(4): 363-74.
170. Inoue M, Shinohara N, Tanabe S, et al. Total Synthesis Of The Large Non-Ribosomal Peptide Polytheonamide B. Nat Chem 2010; 2(4): 280-5.
171. Freeman MF, Gurgui C, Helf MJ, et al. Metagenome Mining Reveals Polytheonamides As Posttranslationally Modified Ribosomal Peptides. Science 2012; 338(6105): 387-90.
172. Hamada T, Matsunaga S, Fujiwara M, et al. Solution Structure of Polytheonamide B, a Highly Cytotoxic Nonribosomal Polypeptide from Marine Sponge. J Am Chem Soc 2010; 132(37): 12941-5.
173. Strieker M, Tanović A, Marahiel MA. Nonribosomal Peptide Synthetases: Structures And Dynamics. Curr Opin Struct Biol 2010; 20(2): 234-40.
174. Schmidt EW, Raventos-Suarez C, Bifano M, et al. Scleritodermin A, A Cytotoxic Cyclic Peptide From The Lithistid Sponge Scleritoderma N Odosum. J Nat Prod 2004; 67(3): 475-8.
175. Fernández R, Bayu A, Aryono Hadi T, et al. Unique Polyhalogenated Peptides from the Marine Sponge Ircinia sp. Mar Drugs 2020; 18(8): 396.
176. Mokhlesi A, Hartmann R, Kurtán T, et al. New 2-Methoxy Acetylenic Acids and Pyrazole Alkaloids from the Marine Sponge Cinachyrella sp. Mar Drugs 2017; 15(11): 356.
177. Luo XW, Lin Y, Lu YJ, et al. Peptides And Polyketides Isolated From The Marine SpongeDerived Fungus Aspergillus Terreus SCSIO 41008. Chin J Nat Med 2019; 17(2): 149-54.
178. Almeida C, Bills G, González-Menéndez V, et al. Time-Dependent Production Of The Bioactive Peptides Endolides A And B And The Polyketide Mariline A From The Sponge-Derived Fungus Stachylidium bicolor 293K04. Fermentation 2017; 3(3): 45.
179. Salib MN, Jamison MT, Molinski TF. Bromo-spiroisoxazoline Alkaloids, Including an Isoserine Peptide, from the Caribbean Marine Sponge Aplysina lacunosa. J Nat Prod 2020; 83(5): 1532-40.
180. Ibrahim S, Mohamed G, Al Haidari R, et al. Ingenine F: A New Cytotoxic Tetrahydro Carboline Alkaloid From The Indonesian Marine Sponge Acanthostrongylophora ingens. Pharmacogn Mag 2018; 14(54): 231-4.
181. Cornelio K, Espiritu RA, Hanashima S, et al. Theonellamide A, A Marine-Sponge-Derived Bicyclic Peptide, Binds To Cholesterol In Aqueous DMSO: Solution NMR-Based Analysis Of Peptide-Sterol Interactions Using Hydroxylated Sterol. Biochim Biophys Acta Biomembr 2019; 1861(1): 228-35.
182. Anand M, Alagar M, Ranjitha J, et al. Total Synthesis And Anticancer Activity Of A Cyclic Heptapeptide From Marine Sponge Using Water Soluble Peptide Coupling Agent EDC. Arab J Chem 2019; 12(8): 2782-7.
183. Pelletier SW. Alkaloids: Chemical And Biological Perspectives. 1983.
184. Elissawy AM, Soleiman Dehkordi E, Mehdinezhad N, et al. Cytotoxic Alkaloids Derived from Marine Sponges: A Comprehensive Review. Biomolecules 2021; 11(2): 258.
185. Mohebbi GH, Arshadi SS, Nabipour I, et al. Marine Tunicate, the Electuary of Mithridates. Iran South Med J 2015; 18(4): 845-97.
186. Rateb ME, Abdelmohsen UR. Bioactive Natural Products from the Red Sea. Mar Drugs 2021; 19(6): 289.
187. Book G. Compendium Of Chemical Terminology. International :union: Of Pure And Applied Chemistry, 2014, 528.
188. Berlinck RG, Trindade-Silva AE, Santos MF. The Chemistry And Biology Of Organic Guanidine Derivatives. Nat Prod Rep 2012; 29(12): 1382-406.
189. Makarieva TN, Tabakmaher KM, Guzii AG, et al. Monanchomycalins A And B, Unusual Guanidine Alkaloids From The Sponge Monanchora pulchra. Tetrahedron Lett 2012; 53(32): 4228-31.
190. National Center for Biotechnology Information. "PubChem Compound Summary for CID 49794528. Monanchocidin A, rel-. PubChem. (Accessed October 11, 2021, at https://pubchem.ncbi.nlm.nih.gov/compound/Monanchocidin-A_-rel)
191. Dyshlovoy SA, Tabakmakher KM, Hauschild J, et al. Guanidine Alkaloids From The Marine Sponge Monanchora Pulchra Show Cytotoxic Properties And Prevent EGF-Induced Neoplastic Transformation In Vitro. Mar Drugs 2016; 14(7): 133.
192. Makarieva TN, Tabakmaher KM, Guzii AG, et al. Monanchocidins B–E: Polycyclic Guanidine Alkaloids With Potent Antileukemic Activities From The Sponge Monanchora pulchra. J Nat Prod 2011; 74(9): 1952-8.
193. Guzii AG, Makarieva TN, Denisenko VA, et al. Monanchocidin: A New Apoptosis-Inducing Polycyclic Guanidine Alkaloid From The Marine Sponge Monanchora pulchra. Org Lett 2010; 12(19): 4292-5.
194. Dyshlovoy SA, Hauschild J, Amann K, et al. Marine Alkaloid Monanchocidin A Overcomes Drug Resistance By Induction Of Autophagy And Lysosomal Membrane Permeabilization. Oncotarget 2015; 6(19): 17328-41.
195. Shubina LK, Makarieva TN, Guzii AG, et al. Absolute Configuration Of The Cytotoxic Marine Alkaloid Monanchocidin A. J Nat Prod 2018; 81(4): 1113-5.
196. Tabakmakher KM, Makarieva TN, Denisenko VA, et al. Normonanchocidins A, B And D, New Pentacyclic Guanidine Alkaloids From The Far-Eastern Marine Sponge Monanchora Pulchra. Nat Prod Commun 2015; 10(6): 913-6.
197. Kashman Y, Hirsh S, McConnell OJ, et al. Ptilomycalin A: A Novel Polycyclic Guanidine Alkaloid Of Marine Origin. J Am Chem Soc 1989; 111(24): 8925-6.
198. Laville R, Thomas OP, Berrué F, et al. Bioactive Guanidine Alkaloids From Two Caribbean Marine Sponges. J Nat Prod 2009; 72(9): 1589-94.
199. Black GP, Coles SJ, Hizi A, et al. Synthesis And Biological Activity Of Analogues Of Ptilomycalin A. Tetrahedron Lett 2001; 42(19): 3377-81.
200. Hua HM, Peng J, Dunbar DC, et al. Batzelladine Alkaloids From The Caribbean Sponge Monanchora unguifera And The Significant Activities Against HIV-1 And AIDS Opportunistic Infectious Pathogens. Tetrahedron 2007; 63(45): 11179-88.
201. Tabakmakher KM, Denisenko VA, Guzii AG, et al. Monanchomycalin C, A New Pentacyclic Guanidine Alkaloid From The Far-Eastern Marine Sponge Monanchora pulchra. Nat Prod Commun 2013; 8(10): 1399-402.
202. Shubina LK, Makarieva TN, Von Amsberg G, et al. Monanchoxymycalin C With Anticancer Properties, New Analogue Of Crambescidin 800 From The Marine Sponge Monanchora Pulchra. Nat Prod Res 2019; 33(10): 1415-22.
203. Aoki S, Kong D, Matsui K, et al. Erythroid Differentiation In K562 Chronic Myelogenous Cells Induced By Crambescidin 800, A Pentacyclic Guanidine Alkaloid. Anticancer Res 2004; 24(4): 2325-30.
204. El-Demerdash A, Moriou C, Martin MT, et al. Cytotoxic Guanidine Alkaloids from a French Polynesian Monanchora n. sp. sponge. J Nat Prod 2016; 79(8): 1929-37.
205. Berlinck RG, Braekman JC, Daloze D, et al. Polycyclic Guanidine Alkaloids From The Marine Sponge Crambe crambe And Ca++ Channel Blocker Activity Of Crambescidin 816. J Nat Prod 1993; 56(7): 1007-15.
206. Martín V, Vale C, Bondu S, et al. Differential Effects Of Crambescins And Crambescidin 816 In Voltage-Gated Sodium, Potassium And Calcium Channels In Neurons. Chem Res Toxicol 2013; 26(1): 169-78.
207. Rubiolo JA, López-Alonso H, Roel M, et al. Mechanism Of Cytotoxic Action Of Crambescidin-816 On Human Liver-Derived Tumour Cells. Br J Pharmacol 2014; 171(7): 1655-67.
208. Rubiolo JA, Ternon E, López-Alonso H, et al. Crambescidin-816 Acts As A Fungicidal With More Potency Than Crambescidin-800 And -830, Inducing Cell Cycle Arrest, Increased Cell Size And Apoptosis In Saccharomyces Cerevisiae. Mar Drugs 2013; 11(11): 4419-34.
209. Kasmiati K, Yoshioka Y, Okamoto T, et al. New Crambescidin-Type Alkaloids From The Indonesian Marine Sponge Clathria bulbotoxa. Mar Drugs 2018; 16(3): 84.
210. Mendez AG, Juncal AB, Silva SBL, et al. The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors. ACS Chem Neurosci 2017; 8(7): 1609-17.
211. El-Demerdash A, Moriou C, Martin MT, et al. Unguiculins A-C: Cytotoxic Bis-Guanidine Alkaloids From The French Polynesian Sponge, Monanchora n. sp. Nat Prod Res 2018; 32(13): 1512-7.
212. Gros E, Al-Mourabit A, Martin MT, et al. Netamines H–N, Tricyclic Alkaloids From The Marine Sponge Biemna Laboutei And Their Antimalarial Activity. J Nat Prod 2014; 77(4): 818-23.
213. Gros E, Martin MT, Sorres J, et al. Netamines O–S, Five New Tricyclic Guanidine Alkaloids From The Madagascar Sponge Biemna Laboutei, And Their Antimalarial Activities. Chem Biodivers 2015; 12(11): 1725-33.
214. Bouaicha N, Amade P, Puel D, et al. Zarzissine, A New Cytotoxic Guanidine Alkaloid From The Mediterranean Sponge Anchinoe paupertas. J Nat Prod 1994; 57(10): 1455-7.
215. Tsukamoto S, Takahashi M, Matsunaga S, et al. Hachijodines A−G:  Seven New Cytotoxic 3-Alkylpyridine Alkaloids from Two Marine Sponges of the Genera Xestospongia and Amphimedon. J Nat Prod 2000; 63(5): 682-4.
216. Burres NS, Sazesh S, Gunawardana GP, et al. Antitumor Activity And Nucleic Acid Binding Properties Of Dercitin, A New Acridine Alkaloid Isolated From A Marine Dercitus Species Sponge. Cancer Res 1989; 49(19): 5267-74.
217. Thale Z, Johnson T, Tenney K, et al. Structures and Cytotoxic Properties of Sponge-Derived Bisannulated Acridines. J Org Chem 2002; 67(26): 9384-91.
218. Göthel Q, Sirirak T, Köck M. Bromotyrosine-Derived Alkaloids From The Caribbean Sponge Aplysina lacunosa. Beilstein J Org Chem 2015; 11: 2334-42.
219. Tarazona G, Santamaría G, Cruz PG, et al. Cytotoxic Anomoian B and Aplyzanzine B, New Bromotyrosine Alkaloids from Indonesian Sponges. ACS Omega 2017; 2(7): 3494-501.
220. Kurimoto S, Seino S, Fromont J, et al. Ma’edamines C and D, New Bromotyrosine Alkaloids Possessing a Unique Tetrasubstituted Pyridinium Moiety from an Okinawan Marine Sponge Suberea sp. Org Lett 2019; 21(21): 8824-6.
221. Buchanan MS, Carroll AR, Addepalli R, et al. Psammaplysenes C And D, Cytotoxic Alkaloids From Psammoclemma sp. J Nat Prod 2007; 70(11): 1827-9.
222. Tabudravu JN, Jaspars M. Purealidin S and Purpuramine J, Bromotyrosine Alkaloids from the Fijian Marine Sponge Druinella sp. J Nat Prod 2002; 65(12): 1798-801.
223. Tsuda M, Sakuma Y, Kobayashi J. Suberedamines A and B, New Bromotyrosine Alkaloids from a Sponge Suberea Species. J Nat Prod 2001; 64(7): 980-2.
224. Rubnov S, Chevallier C, Thoison O, et al. Echinosulfonic Acid D: An ESI MS N Evaluation Of A New Cytotoxic Alkaloid From The New-Caledonian Sponge Psammoclemma sp. Nat Prod Res 2005; 19(1): 75-9.
225. Shaala LA, Youssef DTA, Badr JM, et al. Bioactive Secondary Metabolites from the Red Sea Marine Verongid Sponge Suberea Species. Mar Drugs 2015; 13(4): 1621-31.
226. Tsukamoto S, Yamanokuchi R, Yoshitomi M, et al. Aaptamine, An Alkaloid From The Sponge Aaptos Suberitoides, Functions As A Proteasome Inhibitor. Bioorg Med Chem Lett 2010; 20(11): 3341-3.
227. Liu C, Tang X, Li P, et al. Suberitine A–D, Four New Cytotoxic Dimeric Aaptamine Alkaloids from the Marine Sponge Aaptos suberitoides. Org Lett 2012; 14(8): 1994-7.
228. Rosemeyer H. The Chemodiversity Of Purine As A Constituent Of Natural Products. Chem Biodivers 2004; 1(3): 361-401.
229. Grimmett MR. Imidazole And Benzimidazole Synthesis. Academic Press, 1997.
230. Tsukamoto S, Kawabata T, Kato H, et al. Naamidines H and I, Cytotoxic Imidazole Alkaloids from the Indonesian Marine Sponge Leucetta chagosensis. J Nat Prod 2007; 70(10): 1658-60.
231. Tang WZ, Yang ZZ, Sun F, et al. Leucanone A And Naamine J, Glycerol Ether Lipid And Imidazole Alkaloid From The Marine Sponge Leucandra sp. J Asian Nat Prod Res 2017; 19(7): 691-6.
232. Gross H, Kehraus S, König GM, et al. New and Biologically Active Imidazole Alkaloids from Two Sponges of the Genus Leucetta. J Nat Prod 2002; 65(8): 1190-3.
233. Ralifo P, Tenney K, Valeriote FA, et al. A Distinctive Structural Twist in the Aminoimidazole Alkaloids from a Calcareous Marine Sponge:  Isolation and Characterization of Leucosolenamines A and B. J Nat Prod 2007; 70(1): 33-8.
234. Tang WZ, Yang ZZ, Sun F, et al. (-)- Calcaridine B, A New Chiral Aminoimidazole-Containing Alkaloid From The Marine Sponge Leucetta chagosensis. J Asian Nat Prod Res 2019; 21(11): 1123-8.
235. Wei X, Hu X, Yu R, et al. Efficient Total Synthesis of Lissodendrin B, 2-Aminoimidazole Marine Alkaloids Isolated from Lissodendoryx (Acanthodoryx) Fibrosa. Mar Drugs 2020; 18(1): 36.
236. An B, Yin F, De Voogd NJ, et al. Chagosendines A–C, New Metal Complexes Of Imidazole Alkaloids From The Calcareous Sponge Leucetta chagosensis. Chem Biodivers 2018; 15(2): e1700481.
237. Torres YR, Berlinck RG, Magalhães A, et al. Arenosclerins A−C And Haliclonacyclamine E, New Tetracyclic Alkaloids From A Brazilian Endemic Haplosclerid Sponge Arenosclera brasiliensis. J Nat Prod 2000; 63(8): 1098-105.
238. Srivastava A, Pandeya S. Indole” A Versatile Nucleuse In Pharmaceutical Field. Int J Curr Pharm Rev Res 2011; 4: 5-8.
239. Favre HA, Powell WH. Nomenclature Of Organic Chemistry: IUPAC Recommendations And Preferred Names 2013. Royal Society of Chemistry. 2013.
240. Charan RD, McKee TC, Boyd MR. Cytotoxic Alkaloids from the Marine Sponge Thorectandra sp. Nat Prod Res 2004; 18(3): 225-9.
241. Hitora Y, Takada K, Ise Y, et al. Dragmacidins G and H, Bisindole Alkaloids Tethered by a Guanidino Ethylthiopyrazine Moiety, from a Lipastrotethya sp. Marine Sponge. J Nat Prod 2016; 79(11): 2973-6.
242. Tran TD, Cartner LK, Bokesch HR, et al. NMR Characterization Of Rearranged Staurosporine Aglycone Analogues From The Marine Sponge Damiria sp. Magn Reson Chem 2021; 59(5): 534-9.
243. Kim GD, Cheong OJ, Bae SY, et al. 6″-Debromohamacanthin A, a Bis (Indole) Alkaloid, Inhibits Angiogenesis by Targeting the VEGFR2- Mediated PI3K/AKT/mTOR Signaling Pathways. Mar Drugs 2013; 11(4): 1087-103.
244. Youssef DT. Hyrtioerectines A−C, Cytotoxic Alkaloids from the Red Sea Sponge Hyrtioserectus. J Nat Prod 2005; 68(9): 1416-9.
245. El-Hawary SS, Sayed AM, Mohammed R, et al. Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella. Mar Drugs 2019; 17(8): 465.
246. Tasdemir D, Bugni TS, Mangalindan GC, et al. Cytotoxic Bromoindole Derivatives and Terpenes from the Philippine Marine Sponge Smenospongia sp. Z Naturforsch C J Biosci 2002; 57(9-10): 914-22.
247. Bao B, Sun Q, Yao X, et al. Cytotoxic Bisindole Alkaloids From A Marine Sponge Spongosorites sp. J Nat Prod 2005; 68(5): 711-5.
248. Caprioli V, Cimino G, De Giulio A, et al. Selected Biological Activities Of Saraines. Comp Biochem Physiol B 1992; 103(1): 293-6.
249. De Oliveira JHHL, Grube A, Köck M, et al. Ingenamine G and Cyclostellettamines G−I, K, and L from the New Brazilian Species of Marine Sponge Pachychalina sp. J Nat Prod 2004; 67(10): 1685-9.
250. De Oliveira JHHL, Nascimento AM, Kossuga MH, et al. Cytotoxic Alkylpiperidine Alkaloids from the Brazilian Marine Sponge Pachychalina alcaloidifera. J Nat Prod 2007; 70(4): 538-43.
251. Wei X, Nieves K, Rodríguez AD. Neopetrosiamine A, Biologically Active Bis-Piperidine Alkaloid From The Caribbean Sea Sponge Neopetrosia proxima. Bioorg Med Chem Lett 2010; 20(19): 5905-8.
252. Joule JA, Mills K, Smith GF. Heterocyclic Chemistry. London: CRC Press, 2020.
253. Kılıç H. Experiment-Based Physicochemical Aspects For The Coulombic Hydration Kinetics And Thermodynamics Of A Pyrimidine And Thiopyrimidine. J Mol Liq 2018; 266: 443-52.
254. Liu MM, Mei Q, Zhang YX, et al. Palladium-Catalyzed Amination Of ChloroSubstituted 5-Nitropyrimidines With Amines. Chin Chem Lett 2017; 28(3): 583-7.
255. Baji Á, Kiss T, Wölfling J, et al. Multicomponent Access To AndrostanoArylpyrimidines Under Microwave Conditions And Evaluation Of Their Anti-Cancer Activity In Vitro. J Steroid Biochem Mol Biol 2017; 172: 79-88.
256. Poojari S, Parameshwar Naik S, Krishnamurthy G, et al. Anti-Inflammatory, Antibacterial And Molecular Docking Studies Of Novel Spiro-Piperidine Quinazolinone Derivatives. J Taibah Univ Sci 2017; 11(3): 497-511.
257. Rodríguez J, Jiménez C, Blanco M, et al. Lanesoic Acid: A Cytotoxic Zwitterion from Theonella sp. Org Lett 2016; 18(22): 5832-5.
258. Endo T, Tsuda M, Fromont J, et al. Hyrtinadine A, a Bis-indole Alkaloid from a Marine Sponge. J Nat Prod 2007; 70(3): 423-4.
259. Fresneda PM, Delgado S, Francesch A, et al. Synthesis and Cytotoxic Evaluation of New Derivatives of the Marine Alkaloid Variolin B. J Med Chem 2006; 49(3): 1217-21.
260. Linnell R. Dissociation Constants Of 2- Substituted Pyridines. J Org Chem 1960; 25(2): 290.
261. Hirano K, Kubota T, Tsuda M, et al. Pyrinodemins BD, Potent Cytotoxic Bis-Pyridine Alkaloids From Marine Sponge Amphimedon sp. Chem Pharm Bull 2000; 48(7): 974-7.
262. Takekawa Y, Matsunaga S, Van Soest RWM, et al. Amphimedosides, 3-Alkylpyridine Glycosides from a Marine Sponge Amphimedon sp. J Nat Prod 2006; 69(10): 1503-5.
263. Kariya Y, Kubota T, Fromont J, et al. Pyrinadines B–G, New Bis-Pyridine Alkaloids With An Azoxy Moiety From Sponge Cribrochalina sp. Bioorg Med Chem 2006; 14(24): 8415-9.
264. Arai M, Kamiya K, Shin D, et al. NMethylniphatyne A, a New 3-Alkylpyridine Alkaloid as an Inhibitor of the Cancer Cells Adapted to Nutrient Starvation, from an Indonesian Marine Sponge of Xestospongia sp. Chem Pharm Bull 2016; 64(7): 766-71.
265. Zhang H, Loveridge ST, Tenney K, et al. A New 3-Alkylpyridine Alkaloid From The Marine Sponge Haliclona sp. And Its Cytotoxic Activity. Nat Prod Res 2016; 30(11): 1262-5.
266. Loudon MG. Chemistry Of Naphthalene And The Aromatic Heterocycles. Org Chem 2002; 4: 1135-6.
267. Kaur M, Choi DH. Diketopyrrolopyrrole: Brilliant Red Pigment Dye-Based Fluorescent Probes And Their Applications. Chem Soc Rev 2015; 44(1): 58-77.
268. Casapullo A, Cutignano A, Bruno I, et al. Makaluvamine P, A New Cytotoxic Pyrroloiminoquinone From Zyzzya Cf. Fuliginosa. J Nat Prod 2001; 64(10): 1354-6.
269. Antunes EM, Beukes DR, Kelly M, et al. Cytotoxic Pyrroloiminoquinones From Four New Species Of South African Latrunculid Sponges. J Nat Prod 2004; 67(8): 1268-76.
270. Reyes F, Martín R, Rueda A, et al. Discorhabdins I and L, Cytotoxic Alkaloids from the Sponge Latrunculia brevis. J Nat Prod 2004; 67(3): 463-5.
271. El-Naggar M, Capon RJ. Discorhabdins Revisited: Cytotoxic Alkaloids from Southern Australian Marine Sponges of the Genera Higginsia and Spongosorites. J Nat Prod 2009; 72(3): 460-4.
272. Guzmán EA, Johnson JD, Carrier MK, et al. Selective Cytotoxic Activity Of The MarineDerived Batzelline Compounds Against Pancreatic Cancer Cell Lines. Anticancer Drugs 2009; 20(2): 149-55.
273. Dyson L, Wright AD, Young KA, et al. Synthesis And Anticancer Activity Of Focused Compound Libraries From The Natural Product Lead, Oroidin. Bioorg Med Chem 2014; 22(5): 1690-9.
274. Hamed AN, Schmitz R, Bergermann A, et al. Bioactive Pyrrole Alkaloids Isolated From The Red Sea: Marine Sponge Stylissa carteri. Z Naturforsch C J Biosci 2018; 73(5-6): 199-210.
275. Musiol R, Serda M, Hensel-Bielowka S, et al. Quinoline-Based Antifungals. Curr Med Chem 2010; 17(18): 1960-73.
276. Kumar S, Bawa S, Gupta H. Biological Activities Of Quinoline Derivatives. Mini Rev Med Chem 2009; 9(14): 1648-54.
277. Foley M, Tilley L. Quinoline Antimalarials: Mechanisms Of Action And Resistance And Prospects For New Agents. Pharmacol Ther 1998; 79(1): 55-87.
278. McKee TC, Ireland CM. Cytotoxic And Antimicrobial Alkaloids From The Fijian Sponge Xestospongia caycedoi. J Nat Prod 1987; 50(4): 754-6.
279. Bowden BF, McCool BJ, Willis RH. Lihouidine, A Novel Spiro Polycyclic Aromatic Alkaloid From The Marine Sponge Suberea n. sp. (Aplysinellidae, Verongida. J Org Chem 2004; 69(23): 7791-3.
280. Dung DT, Hang DTT, Yen PH, et al. Macrocyclic Bis-Quinolizidine Alkaloids From Xestospongia Muta. Nat Prod Res 2019; 33(3): 400-6.
281. Sirimangkalakitti N, Chamni S, Charupant K, et al. Chemistry of Renieramycins. 15. Synthesis of 22-O-Ester Derivatives of Jorunnamycin A and Their Cytotoxicity against Non-Small-Cell Lung Cancer Cells. J Nat Prod 2016; 79(8): 2089-93.
282. Oku N, Matsunaga S, Van Soest RWM, et al. Renieramycin J, a Highly Cytotoxic Tetrahydroisoquinoline Alkaloid, from a Marine Sponge Neopetrosia sp. J Nat Prod 2003; 66(8): 1136-9.
283. Coello L, Martín MJ, Reyes F. 1,5- Diazacyclohenicosane, a New Cytotoxic Metabolite from the Marine Sponge Mycale sp. Mar Drugs 2009; 7(3): 445-50.
284. Liang Z, Sulzmaier FJ, Yoshida WY, et al. Neopetrocyclamines A and B, Polycyclic Diamine Alkaloids from the Sponge Neopetrosia cf exigua. J Nat Prod 2015; 78(3): 543-7.
285. Kanno SI, Yomogida S, Tomizawa A, et al. Papuamine Causes Autophagy Following The Reduction Of Cell Survival Through Mitochondrial Damage And JNK Activation In MCF-7 Human Breast Cancer Cells. Int J Oncol 2013; 43(5): 1413-9.
286. Ibrahim SRM, Mohamed GA. Ingenine E, A New Cytotoxic β-Carboline Alkaloid From The Indonesian Sponge Acanthostrongylophora Ingens. J Asian Nat Prod Res 2017; 19(5): 504-9.
287. Tang WZ, Yu HB, Lu JR, et al. Aaptolines A and B, Two New Quinoline Alkaloids From The Marine Sponge Aaptos aaptos. Chem Biodivers 2020; 17(4): e2000074.
288. Hamada T, Matsumoto Y, Phan CS, et al. Aaptamine-Related Alkaloid From The Marine Sponge Aaptos aaptos. Nat Prod Commun 2019; 14(9): 1-3.
289. Wang P, Huang J, Kurtán T, et al. Aaptodines A–D, Spiro Naphthyridine–Furooxazoloquinoline Hybrid Alkaloids from the Sponge Aaptos suberitoides. Org Lett 2020; 22(21): 8215-8.
290. Ibrahim SRM, Mohamed GA, Zayed MF, et al. Ingenines A and B, Two New Alkaloids From The Indonesian Sponge Acanthostrongylophora Ingens. Drug Res (Stuttg) 2015; 65(7): 361-5.
291. Kim CK, Riswanto R, Won TH, et al. Manzamine Alkaloids From An Acanthostrongylophora sp. Sponge. J Nat Prod 2017; 80(5): 1575-83.
292. An L, Song W, Tang X, et al. Alkaloids And Polyketides From The South China Sea Sponge Agelas aff. nemoechinata. RSC Adv 2017; 7(24): 14323-9.
293. Pech-Puch D, Pérez-Povedano M, Martinez-Guitian M, et al. In Vitro And In Vivo Assessment Of The Efficacy Of Bromoageliferin, An Alkaloid Isolated From The Sponge Agelas Dilatata, Against Pseudomonas aeruginosa. Mar Drugs 2020; 18(6): 326.
294. Kwon OS, Kim D, Kim H, et al. Bromopyrrole Alkaloids from the Sponge Agelas kosrae. Mar Drugs 2018; 16(12): 513.
295. Chu MJ, Tang XL, Qin GF, et al. Three New Non-Brominated Pyrrole Alkaloids From The South China Sea Sponge Agelas nakamurai. Chin Chem Lett 2017; 28(6): 1210-3.
296. Li T, Li PL, Luo XC, et al. Three New Dibromopyrrole Alkaloids From The South China Sea Sponge Agelas nemoechinata. Tetrahedron Lett 2019; 60(30): 1996-8.
297. Li T, Tang X, Luo X, et al. Agelanemoechine, A Dimeric Bromopyrrole Alkaloid With A Pro-Angiogenic Effect From The South China Sea Sponge Agelas nemoechinata. Org Lett 2019; 21(23): 9483-6.
298. Kovalerchik D, Singh RP, Schlesinger P, et al. Bromopyrrole Alkaloids Of The Sponge Agelas oroides Collected Near The Israeli Mediterranean Coastline. J Nat Prod 2020; 83(2): 374-84.
299. Sun YT, Lin B, Li SG, et al. New Bromopyrrole Alkaloids From The Marine Sponge Agelas sp. Tetrahedron 2017; 73(19): 2786-92.
300. Abdjul DB, Yamazaki H, Kanno SI, et al. An Anti-Mycobacterial Bisfunctionalized Sphingolipid And New Bromopyrrole Alkaloid From The Indonesian Marine Sponge Agelas sp. J Nat Med 2017; 71(3): 531-6.
301. Kubota T, Nakamura K, Kurimoto SI, et al. Zamamidine D, A Manzamine Alkaloid From An Okinawan Amphimedon sp. Marine Sponge. J Nat Prod 2017; 80(4): 1196-9.
302. Oluwabusola ET, Tabudravu JN, Al Maqbali KS, et al. Antiparasitic Activity Of Bromotyrosine Alkaloids And New Analogues Isolated From The Fijian Marine Sponge Aplysinella Rhax. Chem Biodivers 2020; 17(10): e2000335.
303. Azcuna M, Tun JO, Yap HT, Concepcion GP. Callyspongia samarensis (Porifera) extracts exhibit anticancer activity and induce bleaching in Porites cylindrica (Scleractinia). Chem Ecol 2018; 34(5): 397–411.
304. Prebble DW, Holland DC, Robertson LP, et al. Citronamine A, an Antiplasmodial Isoquinoline Alkaloid from the Australian Marine Sponge Citronia astra. Org Lett 2020; 22(24): 9574-8.
305. Kang U, Cartner LK, Wang D, et al. Denigrins and Dactylpyrroles, Arylpyrrole Alkaloids from a Dactylia sp. Marine Sponge. J Nat Prod 2020; 83(11): 3464-70.
306. Kang U, Caldwell DR, Cartner LK, et al. Elucidation Of Spirodactylone, A Polycyclic Alkaloid From The Sponge Dactylia sp., And Nonenzymatic Generation From The CoMetabolite Denigrin B. Org Lett 2019; 21(12): 4750-3.
307. De Souza RT, Freire VF, Gubiani JR, et al. Bromopyrrole Alkaloid Inhibitors Of The Proteasome Isolated From A Dictyonella sp. Marine Sponge Collected At The Amazon River Mouth. J Nat Prod 2018; 81(10): 2296-300.
308. Wang Q, Tang XL, Luo XC, et al. Aplysinopsin-Type And Bromotyrosine-Derived Alkaloids From The South China Sea Sponge Fascaplysinopsis reticulata. Sci Rep 2019; 9: 2248.
309. Naveen kumar S, Rajivgandhi G, Ramachandran G, et al. A Marine Sponge Fascaplysinopsis Sp. Derived Alkaloid Fascaplysin Inhibits The HepG2 Hepatocellular Carcinoma Cell. Front Lab Med 2018; 2(2): 41-8.
310. Zhou R, Liao X, Li H, et al. Isolation and Synthesis of Misszrtine A: A Novel Indole Alkaloid From Marine Sponge-Associated Aspergillus Sp. SCSIO XWS03F03. Front Chem 2018; 6: 212.
311. Pang X, Cai G, Lin X, et al. New Alkaloids and Polyketides from the Marine Sponge-Derived Fungus Penicillium sp. SCSIO41015. Mar Drugs 2019; 17(7): 398.
312. Urda C, Pérez M, Rodríguez J, et al. Njaoamine I, A Cytotoxic Polycyclic Alkaloid From The Haplosclerida Sponge Haliclona (Reniera) sp. Tetrahedron Lett 2018; 59(26): 2577-80.
313. Chen M, Wu X, Shen N, et al. Four New 6-Oxy Purine Alkaloids From The South China Sea Sponge, Haliclona cymaeformis. J Ocean Univ China 2017; 16: 1183-6.
314. Abdjul DB, Yagi A, Yamazaki H, et al. Anti-Mycobacterial Haliclonadiamine Alkaloids From The Okinawan Marine Sponge Haliclona sp. Collected At Iriomote Island. Phytochem Lett 2018; 26: 130-3.
315. Maarisit W, Abdjul DB, Yamazaki H, et al. Anti-Mycobacterial Alkaloids, Cyclic 3-Alkyl Pyridinium Dimers, From The Indonesian Marine Sponge Haliclona sp. Bioorg Med Chem Lett 2017; 27(15): 3503-6.
316. Park SI, Lee YJ, Won H, et al. Indole Alkaloids from Tropical Sponge Hyrtios sp. as Isocitrate Lyase Inhibitors. Nat Prod Commun 2018; 13(6): 683-5.
317. Takahashi H, Kurimoto SI, Kobayashi JI, et al. Ishigadine A, A New Canthin-6-One Alkaloid From An Okinawan Marine Sponge Hyrtios sp. Tetrahedron Lett 2018; 59(51): 4500-2.
318. Shady NH, Fouad MA, Ahmed S, et al. A New Antitrypanosomal Alkaloid From The Red Sea Marine Sponge Hyrtios sp. J Antibiot 2018; 71(12): 1036-9.
319. Ragini K, Piggott AM, Karuso P. Bisindole Alkaloids From A New Zealand Deep-Sea Marine Sponge Lamellomorpha strongylata. Mar Drugs 2019; 17(12): 683.
320. Li F, Peifer C, Janussen D, et al. New Discorhabdin Alkaloids From The Antarctic Deep-Sea Sponge Latrunculia biformis. Mar Drugs 2019; 17(8): 439.
321. Tang WZ, Yang ZZ, Wu W, et al. Imidazole Alkaloids And Their Zinc Complexes From The Calcareous Marine Sponge Leucetta chagosensis. J Nat Prod 2018; 81(4): 894-900.
322. Sun XH, Zhao RP, Chen Y, et al. Polyacelylenic Alcohols And Alkaloid Derivatives From A Calcareous Marine Sponge, Leucetta chagosensis. Biochem Syst Ecol 2020; 88: 103979.
323. Lyakhova EG, Kolesnikova SA, Kalinovsky AI, et al. Lissodendoric Acids A and B, Manzamine-Related Alkaloids from the Far Eastern Sponge Lissodendoryx florida. Org Lett 2017; 19(19): 5320-3.
324. Tabakmakher KM, Makarieva TN, Denisenko VA, et al. Normonanchocidins G and H, New Pentacyclic Guanidine Alkaloids from the Far-Eastern Marine Sponge Monanchora pulchra. Nat Prod Commun 2017; 12(7): 1029-32.
325. Bakunina I, Likhatskaya G, Slepchenko L, et al. Effect of Pentacyclic Guanidine Alkaloids from the Sponge Monanchora pulchra on Activity of α-Glycosidasesfrom Marine Bacteria. Mar Drugs 2019; 17(1): 22.
326. Campos PE, Wolfender JL, Queiroz EF, et al. Unguiculin A and Ptilomycalins E–H, Antimalarial Guanidine Alkaloids from the Marine Sponge Monanchora unguiculata. J Nat Prod 2017; 80(5): 1404-10.
327. Tilvi S, Majik MS. 2D NMR Studies of Bromotyrosine Alkaloid, Purpurealidin K from Marine Sponge Psammaplysilla purpurea. Chem Select 2019; 4(21): 6568-71.
328. Kurimoto SI, Ohno T, Hokari R, et al. Ceratinadins E and F, New Bromotyrosine Alkaloids from an Okinawan Marine Sponge Pseudoceratina sp. Mar Drugs 2018; 16(12): 463.
329. Kim CK, Wang D, Wilson BAP, et al. Suberitamides A–C, Aryl Alkaloids from a Pseudosuberites sp. Marine Sponge that Inhibit Cbl-b Ubiquitin Ligase Activity. Mar Drugs 2020; 18(11): 536.
330. Jennings LK, Khan NMD, Kaur N, et al. Brominated Bisindole Alkaloids from the Celtic Sea Sponge Spongosorites calcicola. Molecules 2019; 24(21): 3890.
331. Hwang J, Kim D, Park JS, et al. Photoprotective Activity of Topsentin, A Bis (Indole) Alkaloid from the Marine Sponge Spongosorites genitrix, by Regulation of COX-2 and Mir-4485 Expression in UVB-Irradiated Human Keratinocyte Cells. Mar Drugs 2020; 18(2): 87.
332. Park JS, Cho E, Hwang JY, et al. Bioactive Bis(indole) Alkaloids from a Spongosorites sp. Sponge. Mar Drugs 2021; 19(1): 3.
333. Miguel-Gordo M, Gegunde S, Jennings LK, et al. Futunamine, a Pyrrole–Imidazole Alkaloid from the Sponge Stylissa aff. carteri Collected off the Futuna Islands. J Nat Prod 2020; 83(7): 2299-304.
334. Hamed ANE, Schmitz R, Bergermann A, et al. Bioactive Pyrrole Alkaloids Isolated From The Red Sea: Marine Sponge Stylissa carteri C A Journal Of Biosciences. Z Naturforsch 2018; 73(5-6): 199-210.
335. El-Demerdash A, Moriou C, Toullec J, et al. Bioactive Bromotyrosine-Derived Alkaloids from the Polynesian Sponge Suberea ianthelliformis. Mar Drugs 2018; 16(5): 146.
336. Parra LLL, Bertonha AF, Severo IRM, et al. Isolation, Derivative Synthesis, and Structure–Activity Relationships of Antiparasitic Bromopyrrole Alkaloids from the Marine Sponge Tedania brasiliensis. J Nat Prod 2018; 81(1): 188-202.
337. Hiranrat A, Holland DC, Mahabusarakam W, et al. Tedaniophorbasins A and B—Novel Fluorescent Pteridine Alkaloids Incorporating a Thiomorpholine from the Sponge Tedaniophorbas ceratosis. Mar Drugs 2021; 19(2): 95.
338. Khushi S, Salim AA, Elbanna AH, et al. New from Old: Thorectandrin Alkaloids in a Southern Australian Marine Sponge, Thorectandra choanoides (CMB-01889). Mar Drugs 2021; 19(2): 97.
339. Liu HB, Lauro G, O’Connor RD, et al. Tulongicin, An Antibacterial Tri-Indole Alkaloid From A Deep-Water Topsentia sp. Sponge. J Nat Prod 2017; 80(9): 2556-60.
340. Wright AE, Killday KB, Chakrabarti D, et al. Dragmacidin G, A Bioactive Bis-Indole Alkaloid From A Deep-Water Sponge Of The Genus Spongosorites. Mar Drugs 2017; 15(1): 16.
341. Djerassi C, Silva CJ. Biosynthetic Studies Of Marine Lipids. 41. Sponge Sterols: Origin And Biosynthesis. Acc Chem Res 1991; 24(12): 371-8.
342. Aiello A, Fattorusso E, Menna M. Steroids From Sponges: Recent Reports. Steroids 1999; 64(10): 687-714.
343. D'Auria MV, Minale L, Riccio R. Polyoxygenated Steroids Of Marine Origin. Chem Rev 1993; 93(5): 1839-95.
344. Djerassi C, Lam WK. Phospholipid Studies Of Marine Organisms. Part 25. Sponge Phospholipids. Acc Chem Res 1991; 24(3): 69-75.
345. Capon RJ, Faulkner DJ. Herbasterol, An Ichthyotoxic 9,11-Secosterol From The Sponge Dysidea herbacea. J Org Chem 1985; 50(24): 4771-3.
346. Kobayashi J, Shinonaga H, Shigemori H, et al. Xestobergsterol C, a New Pentacyclic Steroid from the Okinawan Marine Sponge Ircinia sp. and Absolute Stereochemistry of Xestobergsterol A. J Nat Prod 1995; 58(2): 312-8.
347. Burgoyne DL, Andersen RJ, Allen TM. Contignasterol, A Highly Oxygenated Steroid With The Unnatural 14. Beta. Configuration From The Marine Sponge Petrosia contignata Thiele, 1899. J Org Chem 1992; 57(2): 525-8.
348. Patil AD, Freyer AJ, Breen A, et al. Halistanol Disulfate B, a Novel Sulfated Sterol from the Sponge Pachastrella sp.  Inhibitor of Endothelin Converting Enzyme. J Nat Prod 1996; 59(6): 606-8.
349. Ridley CP, Faulkner DJ. New Cytotoxic Steroidal Alkaloids from the Philippine Sponge Corticium niger. J Nat Prod 2003; 66(12): 1536-9.
350. Sunassee SN, Ransom T, Henrich CJ, et al. Steroidal Alkaloids from the Marine Sponge Corticium niger That Inhibit Growth of Human Colon Carcinoma Cells. J Nat Prod 2014; 77(11): 2475-80.
351. Luo XC, Wang Q, Tang XL, et al. One Cytotoxic Steroid And Other Two New Metabolites From The South China Sea Sponge Luffariella variabilis. Tetrahedron Lett 2021; 65: 152762.
352. Nakamura F, Kudo N, Tomachi Y, et al. Halistanol Sulfates I And J, New SIRT1–3 Inhibitory Steroid Sulfates From A Marine Sponge Of The Genus Halichondria. J Antibiot 2018; 71(2): 273-8.
353. Woo JK, Yun JH, Ahn S, et al. Dictyoneolone, A B/C Ring Juncture-Defused Steroid From A Dictyonella Sp. Sponge. Tetrahedron Lett 2018; 59(21): 2021-4.
354. Shubina LK, Makarieva TN, Denisenko VA, et al. Gracilosulfates A–G, Monosulfated Polyoxygenated Steroids from the Marine Sponge Haliclona gracilis. Mar Drugs 2020; 18(9): 454.
355. Woo JK, Ha TKQ, Oh DC, et al. Polyoxygenated Steroids From The Sponge Clathria gombawuiensis. J Nat Prod 2017; 80(12): 3224-33.
356. Kun-Ya W, Ping-Lin L, Jing-Fan S, et al. Four New Polyhydroxylated Steroids From The South Sea Sponge Plakortis sp. Chin J Nat Med 2020; 18(11): 844-9.
357. Salendra L, Lin X, Chen W, et al. Cytotoxicity Of Polyketides And Steroids Isolated From The Sponge-Associated Fungus Penicillium citrinum SCSIO 41017. Nat Prod Res 2021; 35(6): 900-8.
358. Tabakmakher KM, Makarieva TN, Denisenko VA, et al. New Trisulfated Steroids from the Vietnamese Marine Sponge Halichondria vansoesti and Their PSA Expression and Glucose Uptake Inhibitory Activities. Mar Drugs 2019; 17(8): 445.
359. Li J, Wang Z, Yang F, et al. Two New Steroids With Cytotoxicity From The Marine Sponge Dactylospongia elegans Collected From The South China Sea. Nat Prod Res 2019; 33(9): 1340-4.
360. Sahidin I, Sabandar CW, Wahyuni RH, et al. A-Nor Steroids From The Marine Sponge, Clathria Species. Malays J Anal Sci 2018; 22(3): 375-82.
361. Chen B, Gu YC, De Voogd NJ, et al. Xidaosterols A And B, Two New Steroids With Unusual α-keto-enol Functionality From The South China Sea Sponge Neopetrosia chaliniformis. Nat Prod Res. 2020.
362. Sartori SK, Diaz MAN, Diaz-Munõz G. Lactones: Classification, Synthesis, Biological Activities, And Industrial Applications. Tetrahedron 2021; 84: 132001.
363. Charan RD, McKee TC, Boyd MR. Thorectandrols C, D, and E, New Sesterterpenes from the Marine Sponge Thorectandra sp. J Nat Prod 2002; 65(4): 492-5.
364. Araki T, Matsunaga S, Nakao Y, et al. Koshikamide B, A Cytotoxic Peptide Lactone From A Marine Sponge Theonella sp. J Org Chem 2008; 73(20): 7889-94.
365. Fusetani N, Warabi K, Nogata Y, et al. Koshikamide A1, A New Cytotoxic Linear Peptide Isolated From A Marine Sponge, Theonella sp. Tetrahedron Lett 1999; 40(25): 4687-90.
366. Cambie RC, Lal AR, Rickard CE. A Sesterterpene Lactone from Petrosaspongia nigra sp. nov. Acta Crystallogr Sect C Cryst Struct Commun 1996; 52(3): 709-11.
367. Lal AR, Cambie RC, Rickard CE, et al. Sesterterpene Lactones From A Sponge Species Of The Genus Dactylospongia. Tetrahedron Lett 1994; 35(16): 2603-6.
368. Fujiwara I, Zweifel ME, Courtemanche N, et al. Latrunculin A Accelerates Actin Filament Depolymerization In Addition To Sequestering Actin Monomers. Curr Biol 2018; 28(19): 3183-92. e2.
369. Yarmola EG, Somasundaram T, Boring TA, et al. Actin-Latrunculin A Structure And Function: Differential Modulation Of Actin-Binding Protein Function By Latrunculin A. J Biol Chem 2000; 275(36): 28120-7.
370. Konishi H, Kikuchi S, Ochiai T, et al. Latrunculin A Has a Strong Anticancer Effect in a Peritoneal Dissemination Model of Human Gastric Cancer in Mice. Anticancer Res 2009; 29(6): 2091-7.
371. Hogrebe NJ, Augsornworawat P, Maxwell KG, et al. Targeting The Cytoskeleton To Direct Pancreatic Differentiation Of Human Pluripotent Stem Cells. Nat Biotechnol 2020; 38(4): 460-70.
372. Cheney KL, White A, Mudianta IW, et al. Choose Your Weaponry: Selective Storage Of A Single Toxic Compound, Latrunculin A, By Closely Related Nudibranch Molluscs. PloS One 2016; 11(1): e0145134.
373. Moccia F. Latrunculin A Depolarizes Starfish Oocytes. Comp Biochem Physiol A Mol Integr Physiol 2007; 148(4): 845-52.
374. Lim D, Lange K, Santella L. Activation Of Oocytes By Latrunculin A. FASEB J 2002; 16(9): 1050-6.
375. Terashita Y, Wakayama S, Yamagata K, et al. Latrunculin A Can Improve the Birth Rate of Cloned Mice and Simplify the Nuclear Transfer Protocol by Gently Inhibiting Actin Polymerization1. Biol Reprod 2012; 86(6): 180.
376. Mallol A, Santaló J, Ibáñez E. Improved Development Of Somatic Cell Cloned Mouse Embryos By Vitamin C And Latrunculin A. PloS One 2015; 10(3): e0120033.
377. Sayed KAE, Khanfar MA, Shallal HM, et al. Latrunculin A and Its C-17-O-Carbamates Inhibit Prostate Tumor Cell Invasion and HIF-1 Activation in Breast Tumor Cells. J Nat Prod 2008; 71(3): 396-402.
378. Würtemberger J, Tchessalova D, Regina C, et al. Growth Inhibition Associated With Disruption Of The Actin Cytoskeleton By Latrunculin A In Rhabdomyosarcoma Cells. PloS One 2020; 15(9): e0238572.
379. Meadows JC, Millar J. Latrunculin A Delays Anaphase Onset in Fission Yeast by Disrupting an Ase1-independent Pathway Controlling Mitotic Spindle Stability. Mol Biol Cell 2008; 19(9): 3713-23.
380. Asadi F, Chakraborty B, Karagiannis J. Latrunculin A-Induced Perturbation of the Actin Cytoskeleton Mediates Pap1p-Dependent Induction of the Caf5p Efflux Pump in Schizosaccharomyces pombe. G3 Genes Genom Genet 2017; 7(2): 723-30.
381. Foissner I, Wasteneys GO. Wide-Ranging Effects of Eight Cytochalasins and Latrunculin A and B on Intracellular Motility and Actin Filament Reorganization in Characean Internodal Cells. Plant Cell Physiol 2007; 48(4): 585-97.
382. Liu X, Wu Z, Sheibani N, et al. Low Dose Latrunculin-A Inhibits Dexamethasone-Induced Changes In The Actin Cytoskeleton And Alters Extracellular Matrix Protein Expression In Cultured Human Trabecular Meshwork Cells. Exp Eye Res 2003; 77(2): 181-8.
383. Houssen WE, Jaspars M, Wease KN, et al. Acute Actions Of Marine Toxin Latrunculin A On The Electrophysiological Properties Of Cultured Dorsal Root Ganglion Neurones. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142(1-2): 19-29.
384. Zhou C, Huang L, Shi DS, et al. Effects Of Latrunculin A On The Relocation Of Sperm IZUMO1 During Gamete Interaction In Mouse. Mol Reprod Dev 2017; 84(11): 1183-90.
385. Sierra-Paredes G, Oreiro-García T, NúñezRodriguez A, et al. Seizures Induced By In Vivo Latrunculin A And Jasplakinolide Microperfusion In The Rat Hippocampus. J Mol Neurosci 2006; 28(2): 151-60.
386. Freire-Cobo C, Sierra-Paredes G, Freire M, et al. The Calcineurin Inhibitor Ascomicin Interferes with the Early Stage of the Epileptogenic Process Induced by Latrunculin A Microperfusion in Rat Hippocampus. J Neuroimmune Pharmacol 2014; 9(5): 654-67.
387. Fürstner A, Kirk D, Fenster MDB, et al. Latrunculin Analogues with Improved Biological Profiles by “Diverted Total Synthesis”: Preparation, Evaluation, and Computational Analysis. Chem Eur J 2007; 13(1): 135-49.
388. Chakraborty K, Francis P. Procerolides AB From Microcionidae Marine Sponge Clathria Procera: Anti-Inflammatory Macrocylic Lactones With Selective Cyclooxygenase-2 Attenuation Properties. Bioorg Chem 2021; 109: 104663.
389. Nakamukai S, Takada K, Furihata K, et al. Stellatolide H, A Cytotoxic Peptide Lactone From A Deep-Sea Sponge Discodermia sp. Tetrahedron Lett 2018; 59(26): 2532-6.
390. Küppers L, Ebrahim W, El-Neketi M, et al. Lactones From The Sponge-Derived Fungus Talaromyces Rugulosus. Mar Drugs 2017; 15(11): 359.
391. Liu Y, Ding L, Fang F, et al. Penicillilactone A, A Novel Antibacterial 7-Membered Lactone Derivative From The Sponge-Associated Fungus Penicillium sp. LS54. Nat Prod Res 2019; 33(17): 2466-70.
392. McCullough JJ. Photoadditions Of Aromatic Compounds. Chem Rev 1987; 87(4): 811-60.
393. Sibero MT, Zhou T, Fukaya K, et al. Two New Aromatic Polyketides From A Sponge-Derived Fusarium. beilstein J Org Chem 2019; 15: 2941-7.
394. Costa M, Coello L, Urbatzka R, et al. New Aromatic Bisabolane Derivatives with LipidReducing Activity from the Marine Sponge Myrmekioderma sp. Mar Drugs 2019; 17(6): 375.
395. Quang TH, Phong NV, Hanh TTH, et al. Cytotoxic And Immunomodulatory Phenol Derivatives From A Marine Sponge-Derived Fungus Ascomycota sp. VK12. Nat Prod Res. 2020.
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baghban N, Mohebbi G H, Zarea M, Nabipour I. Sea God- Sponges: Toxins and Secondary Metabolites. Iran South Med J. 2021; 24 (4) :341-434
URL: http://ismj.bpums.ac.ir/article-1-1503-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 24, Issue 4 (Iranian South Medical Journal 2021) Back to browse issues page
دانشگاه علوم پزشکی بوشهر، طب جنوب ISMJ

Iranian South Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License which allows users to read,
copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly

Copyright © 2017, Iranian South Medical Journal| All Rights Reserved

Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4410