دوره 23، شماره 1 - ( دو ماهنامه طب جنوب 1399 )                   جلد 23 شماره 1 صفحات 55-48 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- گروه فیزیک، دانشکده علوم پایه، دانشگاه پیام نور، تهران، ایران
2- گروه فیزیک، دانشکده علوم پایه، دانشگاه پیام نور، تهران، ایران ، Bahmanix22@yahoo.com
چکیده:   (2917 مشاهده)
زمینه:‌ گاز رادون از جمله مواد رادیواکتیوی می‌باشد که خیلی زیاد در معادن زیرزمینی یافت می‌شود و از طریق تنفس می‌تواند وارد ریه و سبب ایجاد بیماری در افراد شود. هدف از این مطالعه اندازه‌گیری غلظت گاز رادون و دوز جذبی مؤثر سالانه معدن‌کاران در غارهای سبز، مسلم و کمری معدن فیروزه نیشابور می‌باشد. نتایج تحقیق با حدود مجاز مقایسه می‌شود و می‌تواند نقش مهمی در پیشگیری از هر گونه بیماری برای معدن‌کاران داشته باشد.
مواد و روش‌ها: غلظت گاز رادون در معدن فیروزه نیشابور در عمق 250 متری از سطح زمین به کمک دستگاه RTM1688 اندازه‌گیری می‌شود. با استفاده از مقادیر به‌دست آمده، دوز جذب شده مؤثر سالانه رادون توسط معدن‌کاران محاسبه می‌شود.
یافته‌ها: میزان غلظت گاز رادون در این معدن در سه مکان غار سبز، غار مسلم و غار کمری به ترتیب 33/5039، 67/4758 و 3277 بکرل بر متر مکعب اندازه‌‌گیری شد و مشخص گردید معدن‌کاران فیروزه به‌طور متوسط در هر یک از مکان‌ها به مقدار 07/41، 78/38 و 70/26 میلی‌سیورت دوز سالانه دریافت می‌کنند.
نتیجه‌گیری: مقادیر غلظت اندازه‌گیری شده در سه مکان معدن فیروزه نیشابور از حد مجاز بیشتر است و دوز مؤثر سالانه دریافتی کارکنان نیز در غار سبز، غار مسلم بالاتر از حد مجاز است. به منظور پیشگیری از هر گونه شیوع بیماری پیشنهاد می‌گردد ضمن کاهش زمان شیفت کاری از تردد غیرضرروی معدن‌کاران در محل‌های مشخص شده با دوز بالا خودداری و از تهویه‌های مناسب با بازده بالا استفاده شود.
واژه‌های کلیدی: رادون، دوز، رادیواکتیو، معدن، سرطان، نیشابور
متن کامل [PDF 543 kb]   (705 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بهداشت عمومی
دریافت: 1397/9/22 | پذیرش: 1398/8/12 | انتشار: 1399/1/9

فهرست منابع
1. Fisher EL, Neuberger JS, Platz CE, et al. Residential Radon Gas Exposure and Lung Cancer: the Iowa Radon Lung Cancer Study. Am J Epidemiol 2000; 151(11): 1091-102. [DOI:10.1093/oxfordjournals.aje.a010153]
2. Farrokhzadeh H, Jafari N, Sadeghi M, et al. Estimation of Spatial Distribution of PM10, Lead, and Radon Concentrations in Sepahanshahr, Iran Using Geographic Information System (GIS). J Mazandaran Univ Med Sci 2018; 28(159): 84-96. (Persian) [Link]
3. Fişne A, Ökten G, Çelebi N. Radon Concentration Measurements in Bituminous Coal Mines. Radiat Prot Dosimetry 2005; 113(2): 173-7. [DOI:10.1093/rpd/nch449]
4. Rao KV, Reddy BL, Reddy PY, et al. Airborne Radon and Its Progeny Levels in the Coal Mines of Godavarikhani, Andhra Pradesh, India. J Radiol Prot 2001; 21(3): 259-68. [DOI:10.1088/0952-4746/21/3/304]
5. Anjos R, Umisedo N, Da Silva A, et al. Occupational Exposure to Radon and Natural Gamma Radiation in the La Carolina, a Former Gold Mine in San Luis Province, Argentina. J Environ Radioact 2010; 101(2): 153-8. [DOI:10.1016/j.jenvrad.2009.09.010]
6. George AC. Measurement of the Uncombined Fraction of Radon Daughters with Wire Screens. Health Phys 1972; 23(3): 390-2. [DOI:10.1097/00004032-197212000-00005]
7. Grosche B, Kreuzer M, Kreisheimer M, et al. Lung Cancer Risk among German Male Uranium Miners: A Cohort Study, 1946-1998. Br J Cancer 2006; 95(9): 1280-7. [DOI:10.1038/sj.bjc.6603403]
8. Brüske-Hohlfeld I, Rosario AS, Wölke G, et al. Lung Cancer Risk among Former Uranium Miners of the WISMUT Company in Germany. Health phys 2006; 90(3): 208-16. [DOI:10.1097/01.HP.0000175443.08832.84]
9. Majdi M, Rafeemanesh E, Ehteshamfa SM, et al. Analyzing Occupational Lung Disease among Turquoise Miners. Iran Occup Health 2009; 6(2): 31-7. (Persian) [Link]
10. Garagian A, Lotfi F. Turquoise Archeology: Human, Stone And Color. Iran Anthropol Res 2014; 4(2): 105-24. (Persian) [Google Scholar]
11. Alizade A, Kimiaie M, Mashkour M, et al. The Origins of State Organizations In Prehistoric Highland Fars, Southern Iran Excavations at Talle- E Bakun, In Oriental Institute Publications The oriental Institute of the University of Chicago, Illinois 2006; 128(1): 1-14.
12. UNSCEAR. Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation: Sources. United Nations Publications, 2000, 666.
13. Mowlavi AA, Shahbahrami A, Binesh A. Dose Evaluation and Measurement of Radon Concentration in some Drinking Water Sources of the Ramsar Region in Iran. Isotopes Environ Health Stud 2009; 45(3): 269-72. [DOI:10.1080/10256010903084084]
14. Mowlavi AA, Mohammad Jafari F. The Estimated Annual Effective Dose Caused By Radon and Thoron Gases in the Vicinity of Active Faults in the North East of Iran. Iran South Med J 2017; 20(1): 70-6. (Persian) [DOI:10.18869/acadpub.ismj.20.1.70]
15. Hadad K, Mokhtari J. Indoor Radon Variations in Central Iran and Its Geostatistical Map. Atmos Environ 2015; 102: 220-7. [DOI:10.1016/j.atmosenv.2014.12.013]
16. Cile S, Altınsoy N, Çelebi N. Radon Concentrations in Three Underground Lignite Mines in Turkey. Radiat Prot Dosimetry 2010; 138(1): 78-82. [DOI:10.1093/rpd/ncp179]
17. Veiga LH, Melo V, Koifman S, et al. High Radon Exposure in a Brazilian Underground Coal Mine. J Radiol Prot 2004; 24(3): 295-305. [DOI:10.1088/0952-4746/24/3/008]
18. Tresnjo Z, Adrovic J, Hankic E. Levels of Radon Activity Concentration and Gamma Dose Rate in Air of Coal Mines in Bosnia and Herzegovina. Radon, 2017. [DOI:10.5772/intechopen.69903]
19. Margineanu RM. Radon Measurements in Underground Mines and CavesFrom Several European Countries. AIP Conf Proc 2019; 2076(1): 050004. [DOI:10.1063/1.5091643]
20. Schmid K, Kuwert T, Drexler H. Radon in Indoor Spaces: An Underestimated Risk Factor for Lung Cancer in Environmental Medicine. Dtsch Arztebl Int 2010; 107(11): 181-6. [DOI:10.3238/arztebl.2010.0181]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.