Volume 23, Issue 2 (Iranian South Medical Journal 2020)                   Iran South Med J 2020, 23(2): 87-98 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golestani Eimani B, Ansarin K, Sahebi L, Seyyedi M. Molecular Typing of Mycobacterium Tuberculosis Isolated from Iranian Patients Using Highly Abundant Polymorphic GC-Rich-Repetitive Sequence. Iran South Med J 2020; 23 (2) :87-98
URL: http://ismj.bpums.ac.ir/article-1-1290-en.html
1- Department of Biology, School of Basic Sciences, Islamic Azad University, Urmia, Iran
2- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
3- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran , seyyedim@tbzmed.ac.ir
Abstract:   (3086 Views)
Background: Tuberculosis (TB) with more than 10 million new cases per year and one of the top 10 causes of death worldwide, is still one of the most important global health problems. Also, multi drug-resistant tuberculosis (MDR) is a serious danger to public health. Understanding of the epidemiological pattern of mycobacterium tuberculosis (MTB), Estimates of recent transmission and recurrence of infection, it is
possible with molecular typing methods. The present study was performed aiming to track and determine the type of Mycobacterium tuberculosis infection, as well as its relationship with demographic factors, using PGRS-RFLP.
Materials and Methods: In this study, 90 samples collected from TB patients from the North West provinces of Iran, Molecular typing by Characterization highly abundant polymorphic GC-rich-repetitive sequence. Investigated Demographic factors associated with the transmission of the disease.
Results: All isolates were grouped into 44 clusters 28types (33.3%) of the subspecies were in unique stains and 66.7% (from 56 patients) had clustered isolates. The largest cluster contained 8 isolates (9.52%) was the West provinces of Iran.
Conclusion: Genetic variation of Mycobacterium tuberculosis is high in this region. The rate of recent transmission based on clustering was unexpected (The global average is 30%-40%). The recent transmission was more dynamic in the west than northwest Iran. Clustering based on PGRS-RFLP can demonstrate the high correlation between molecular and classic information. In addition, the significant relationship between vaccination record and clustering highlights the necessity to conduct more extensive studies.
Full-Text [PDF 799 kb]   (607 Downloads)    
Type of Study: Original | Subject: Microbiology and Immunology
Received: 2019/08/3 | Accepted: 2019/12/10 | Published: 2020/06/27

References
1. Kruczak K, Augustynowicz-Kopeć E, Kozińska M, et al. Tuberculosis Transmission in the Population of Patients from the Krakow Region (Poland) Based on the Epidemiological and Molecular Methods. Int J Mycobacteriol 2019; 8(1): 60-9. [DOI:10.4103/ijmy.ijmy_11_19]
2. Essone PN, Leboueny M, Siawaya ACM, et al. M. Tuberculosis Infection and Antigen Specific Cytokine Response in Healthcare Workers Frequently Exposed to Tuberculosis. Sci Rep 2019; 9(1): 8201. [DOI:10.1038/s41598-019-44294-0]
3. Tuberculosis WHO. Tuberculosis. (Accessed October 17, 2019, at https://www.who.int/news-room/factsheets/detail/tuberculosis)
4. Houben RM, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: a Re-estimation Using Mathematical Modelling. PLoS Med 2016; 13(10): e1002152. [DOI:10.1371/journal.pmed.1002152]
5. Sahebi L, Ansarin K, Seyyedi M, et al. Epidemiology and Patterns of Drug Resistance among Tuberculosis Patients in Northwestern Iran. Indian J Med Microbiol 2016; 34(3): 362-8. [DOI:10.4103/0255-0857.188352]
6. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug‐Resistant, Extensively Drug‐ resistant and Pandrug‐resistant Bacteria: an International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin Microbiol Infect 2012; 18(3): 268-81. [DOI:10.1111/j.1469-0691.2011.03570.x]
7. Kazemian H, Kardan-Yamchi J, Mosavari N, et al. Molecular Characterization of Multidrug and Extensive Drug-resistant Mycobacterium Tuberculosis Isolates from Iran. Infez Med 2019; 27(1): 26-31.
8. Vyazovaya AA, Mokrousov IV, Zhuravlev VY, et al. The Molecular Characteristic of Multidrug-resistant Strains of Mycobacterium Tuberculosis Isolated in Northwestern Russia. Mol Genet Microbiol Virol 2016; 31(1): 36-9. [DOI:10.3103/S0891416816010092]
9. Vaziri F, Kohl TA, Ghajavand H, et al. Genetic Diversity of Multi-and Extensively DrugResistant Mycobacterium Tuberculosis Isolates in the Capital of Iran, Revealed by WholeGenome Sequencing. J Clin Microbiol 2019; 57(1): e01477-18. [DOI:10.1128/JCM.01477-18]
10. Ei PW, Aung WW, Lee JS, et al. Molecular Strain Typing of Mycobacterium Tuberculosis: A Review of Frequently Used Methods. J Korean Med Sci 2016; 31(11): 1673-83. [DOI:10.3346/jkms.2016.31.11.1673]
11. Gonzalo-Asensio J, Pérez I, Aguiló N, et al. New Insights into the Transposition Mechanisms of IS6110 and its Dynamic Distribution between Mycobacterium Tuberculosis Complex Lineages. PLoS Genet 2018; 14(4): e1007282. [DOI:10.1371/journal.pgen.1007282]
12. Sahebi L, Ansarin K, Hoffner S, et al. A Molecular Epidemiology of Mycobacterium Tuberculosis Strains in the North West and West of Iran. Ann Med Health Sci Res 2015; 5(5): 334-9. [DOI:10.4103/2141-9248.165249]
13. Chae H, Shin SJ. Importance of Differential Identification of Mycobacterium Tuberculosis Strains for Understanding Differences in their Prevalence, Treatment Efficacy, and Vaccine Development. J Microbiol 2018; 56(5): 300-11. [DOI:10.1007/s12275-018-8041-3]
14. Jagielski T, Van Ingen J, Rastogi N, et al. Current Methods in the Molecular Typing of Mycobacterium Tuberculosis and other Mycobacteria. Biomed Res Int 2014; 2014: 645802. [DOI:10.1155/2014/645802]
15. Yaghoubi S, Mosavari N, Moradi Bidhendi S, et al Molecular typing of Mycobacterium tuberculosis strains isolated from patients in Markazi Province. Iran South Med J. 2014; 17 (4) :602-611. (Persian)
16. Ross BC, Raios K, Jackson K, et al. Molecular Cloning of a Highly Repeated DNA Element from Mycobacterium Tuberculosis and Its Use as an Epidemiological Tool. J Clin Microbiol 1992; 30(4): 942-6. [DOI:10.1128/JCM.30.4.942-946.1992]
17. Kumar V, Abbas AK, Fausto NMR. Robbins Basic Pathology. 8 th ed. Philadelphia: Saunders Elsevier, 2007, 516-22.
18. Van Soolingen D, De Haas PE, Kremer K. Restriction Fragment Length Polymorphism Typing of Mycobacteria. Methods Mol Med 2001; 54: 165-203. [DOI:10.1385/1-59259-147-7:165]
19. Rafiee B, Mosavari N, Farazi AA, et al. DNA Fingerprinting of Mycobacterium Tuberculosis Isolates of Pulmonary Tuberculosis Patients in Markazi Province by PGRS-RFLP Method. J Arak Uni Med Sci 2012; 15(6): 35-44. (Persian)
20. Asgharzadeh M, Khakpour M, Salehi TZ, et al. Use of Mycobacterial Interspersed Repetitive Unit-variable-number Tandem Repeat Typing to Study Mycobacterium Tuberculosis Isolates from East Azarbaijan Province of Iran. Pak J Biol Sci 2007; 10(21): 3769-77. [DOI:10.3923/pjbs.2007.3769.3777]
21. Doroudchi M, Kremer K, Basiri EA, et al. IS6110- RFLP and Spoligotyping of Mycobacterium Tuberculosis Isolates in Iran. Scand J Infect Dis 2000; 32(6): 663-8. [DOI:10.1080/003655400459595]
22. Richardson M, Van Der Spuy GD, Sampson SL, et al. Stability of Polymorphic GC-Rich Repeat Sequence-Containing Regions of Mycobacterium Tuberculosis. J Clin Microbiol 2004; 42(3): 1302-4. [DOI:10.1128/JCM.42.3.1302-1304.2004]
23. Farnia P, Masjedi MR, Varahram M, et al. The Recent-Transmission of Mycobacterium Tuberculosis Strains Among Iranian and Afghan Relapse Cases: A DNA-Fingerprinting Using RFLP and Spoligotyping. BMC Infect Dis 2008; 8: 109. [DOI:10.1186/1471-2334-8-109]
24. Chaves F, Yang Z, El Hajj H, et al. Usefulness of the Secondary Probe pTBN12 in DNA Fingerprinting of Mycobacterium Tuberculosis. J Clin Microbiol 1996; 34(5): 1118-23. [DOI:10.1128/JCM.34.5.1118-1123.1996]
25. Borges M, Cafrune PI, Possuelo LG, et al. Molecular Analysis of Mycobacterium Tuberculosis Strains from an Outpatient Clinic in Porto Alegre. J Bras Pneumol 2004; 30(4): 358-64. [DOI:10.1590/S1806-37132004000400010]
26. Gagneux S, DeRiemer K, Van T, et al. Variable Host-pathogen Compatibility in Mycobacterium Tuberculosis. Proc Natl Acad Sci USA 2006; 103(8): 2869-73. [DOI:10.1073/pnas.0511240103]
27. Arbeláez MP, Nelson KE, Muñoz A. BCG Vaccine Effectiveness in Preventing Tuberculosis and its Interaction with Human Immunodeficiency Virus Infection. Int J Epidemiol 2000; 29(6): 1085-91. [DOI:10.1093/ije/29.6.1085]
28. Lei JP, Xiong GL, Hu QF, et al. Immunotherapeutic efficacy of BCG vaccine in pulmonary tuberculosis and its preventive effect on multidrug-resistant tuberculosis. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine] 2008; 42(2): 86-89.
29. Maliarik MJ, Iannuzzi MC. Host Genetic Factors in Resistance and Susceptibility to Tuberculosis Infection and Disease. Semin Respir Crit Care Med 2003; 24(2): 223-8. [DOI:10.1055/s-2003-39021]

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian South Medical Journal

Designed & Developed by: Yektaweb