Volume 23, Issue 4 (Iranian South Medical Journal 2020)                   Iran South Med J 2020, 23(4): 371-430 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebbi G H, Maryamabadi A, Nabipour I. Toxinology of Venomous Marine Worms; A Review. Iran South Med J 2020; 23 (4) :371-430
URL: http://ismj.bpums.ac.ir/article-1-1334-en.html
1- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
2- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , Inabipour@gmail.com
Abstract:   (3030 Views)
Although the widespread distribution of venomous marine worms around the world, the structural and
toxinologcal studies of their toxins are still limited.This study was aimed to evaluate the toxicity of
poisonous marine worms. Touching the cilium of Chloeia flava and Sipuncula marine worms cause painful inflammation of the skin. Many species of nemertines prey their victims by a flexible proboscis and dense mucus on the surface of the skin. They have recently been classified into three groups of the Palaeonmertea, Pilidiophora, and Hoplonemertea. Their toxins comprise the three main groups of peptides, pyridine
alkaloids, and tetradotoxin and their derivatives. The nicotinoide amphiporine compound, anabaseine and its derivatives, Nemertelline, and anabasine are as alkaloid toxins. They are selectively stimulated the
 nicotinic receptors, in particular the type of α-7 receptors. Nemerteans are produced a variety of peptide toxins.The hemolytic activity is the most prominent activity of the cerebratulus toxins A-I to A-IV.
Cytotoxin A-III, by forming tetrameric forms in the membranes of many different cells, and creating large pores, makes them very permeable. The toxin inhibits the protein kinase C and the selective cationic sodium and calcium channels of the voltage-gate in the nervous and cardiovascular systems at low lytic
concentrations. From four main proteins "Cerebratulus toxins- B-II to B-IV", the toxin B-II performed to be the most toxic compound.The assessment of the Lineus extract showed that they are actually more toxic than Cerebratulus extracts. The neurotoxins α- and β-nemertides, respectively, belong to the family of three and six kilodaltons. The nemertide α-1 is highly potent toxin against the VGSC. Dose-dependent injections have caused permanent paralysis to death. Many toxin genes have been predicted or discovered in the genomes and transcriptoms of nemerteans. The most prominent of the toxin genes were the Plancitoxin-1 sequence, Stichodactyla toxin peptide (Shk toxin), Se-Cephalotoxin, β pore-forming toxin aerolysin, and several neurotoxin-related sequences, such as delta-actitoxin-Amc1a, Perivitellin-2, Mu-theraphotoxin Hhn2a 4 and turripeptide Gsg9.2, different α-, β-nemertides (B-neurotoxins analogs), and Parborlysin. Most likely, the Parborlysins belong to the same family of cytotoxins AI-AIV. Study on these marine organism toxins can provide useful probes for examining receptors, ion channels, and even innate immunity mechanisms against infectious viruses, parasites, and other microbes.
Full-Text [PDF 1969 kb]   (1236 Downloads)    
Type of Study: Review | Subject: General
Received: 2020/04/6 | Accepted: 2020/05/9 | Published: 2020/09/30

1. Sabatier JM, Michel DW. Handbook of Biologically Active Peptides. Chapt: 57. Animal Toxins, 2013, 407-415. (Available at http://Dx.Doi.Org/10.1016/B978-0-12- 385095-9.00057-9) [DOI:10.1016/B978-0-12-385095-9.00057-9]
2. Mohebbi GH, Nabipour I, Vazirizadeh A. Neurotoxic Syndromes In Marine Poisonings; A Review. Iran South Med J 2014; 17(3): 451-75. (Persian)
3. Mohebbi GH, Nabipour I, Vazirizadeh A. The Sea, The Future Pharmacy. Iran South Med J 2014; 17(4): 748-88. (Persian)
4. Hornbeak KB, Auerbach PS. Marine Envenomation. Emerg Med Clin North Am 2017; 35(2): 321-37. [DOI:10.1016/j.emc.2016.12.004]
5. Von Reumont BM, Blake A, Richter S, et al. The First Venomous Crustacean Revealed By Transcriptomics And Functional Morphology: Remipede Venom Glands Express A Unique Toxin Cocktail Dominated By Enzymes And A Neurotoxin. Mol Biol Evol 2014; 31(1): 48-58. [DOI:10.1093/molbev/mst199]
6. Blunt JW, Carroll AR, Copp BR, et al. Marine Natural Products. Nat Prod Rep 2018; 35(1): 8-53. [DOI:10.1039/C7NP00052A]
7. Kinch MS, Haynesworth A, Kinch SL, et al. An Overview Of FDA-Approved New Molecular Entities: 1827-2013. Drug Discov Today 2014; 19(8): 1033-9. [DOI:10.1016/j.drudis.2014.03.018]
8. Jaspars M, De Pascale D, Andersen JH, et al. The Marine Biodiscovery Pipeline And Ocean Medicines Of Tomorrow. J Mar Biol Assoc UK 2016; 96(Special Issue 1): 151-8. [DOI:10.1017/S0025315415002106]
9. Rangel M, Falkenberg M. An Overview Of The Marine Natural Products In Clinical Trials And On The Market. J Coast Life Med 2015; 3(6): 421-28. [DOI:10.12980/JCLM.3.2015JCLM-2015-0018]
10. Kem WR. Handbook Of Biologically Active Peptides. Chapter 65. Worm Peptides, 2013, 483-87. (Available at http://Dx.Doi.Org/10.1016/B978-0-12- 385095-9.00065-8) [DOI:10.1016/B978-0-12-385095-9.00065-8]
11. Andreotti N, Jouirou B, Mouhat S, et al. Therapeutic Value Of Peptides From Animal Venoms. Comprehensive Natural Products II, 2010, 287-303. [DOI:10.1016/B978-008045382-8.00114-3]
12. Coutinho MCL, Teixeira VL, Santos CSG. A Review Of "Polychaeta" Chemicals And Their Possible Ecological Role. J Chem Ecol 2018; 44: 72-94. [DOI:10.1007/s10886-017-0915-z]
13. Lewis RJ, Garcia ML. Therapeutic Potential Of Venom Peptides. Nat Rev Drug Discov 2003; 2(10): 790-802. [DOI:10.1038/nrd1197]
14. Kem WR. Structure And Activity Of Nemertine Toxins. Am Zool 1985; 25(1): 99-111. [DOI:10.1093/icb/25.1.99]
15. Lichtenegger HC, Schoèber T, Bart MH, et al. High Abrasion Resistance With Sparse Mineralization: Copper Biomineral In Worm Jaws. Science 2002; 298(5592): 389-92. [DOI:10.1126/science.1075433]
16. Meunier FA, Feng ZP, Molgó J, et al. Glycerotoxin From Glycera Convoluta Stimulates Neurosecretion By Up-Regulating N-Type Ca2+ Channel Activity. EMBO J 2002; 21(24): 6733‐43. [DOI:10.1093/emboj/cdf677]
17. Manaranche R, Thieffry M, Israel M. Effect Of The Venom Of Glycera Convoluta On The Spontaneous Quantal Release Of Transmitter. J Cell Biol 1980; 85(2): 446-58. [DOI:10.1083/jcb.85.2.446]
18. More N, Thieffry M, Manaranche R. Binding Of A Glycera Convoluta Neurotoxin To Cholinergic Nerve Terminal Plasma Membranes. J Cell Biol 1983; 97(6): 1737-44. [DOI:10.1083/jcb.97.6.1737]
19. Jarvis SE, Zamponi GW. Distinct Molecular Determinants Govern Syntaxin 1A-Mediated Inactivation And G-Protein Inhibition Of N-Type Calcium Channels. J Neurosci 2001; 21(9): 2939-48. [DOI:10.1523/JNEUROSCI.21-09-02939.2001]
20. Haddad V. Miscellaneous Marine Toxins Of Medical Significance. In: Gopalakrishnakone P, Haddad Jr V, Tubaro A, Kim E, Kem W, editors. Dordrecht: Marine And Freshwater Toxins. Toxinology. Springer, 2016. [DOI:10.1007/978-94-007-6419-4_17]
21. Chloeia Flava. Queensland Museum. (Accessed Jun 3, 2020, at https://Www.Qm.Qld.Gov.Au/Find+Out+About/ Animals+Of+Queensland/Sea+Life/Worms/Segmented+Worms+Annelida/Bristle+Worm#.Xj_Mxnizam8 Queensland)
22. MESA. Marine Worms - Sipunculid Worms Or Peanut Worms Peanutworm. (Accessed Jun 3, 2020, at http://www.Mesa.Edu.Au/Marine_Worms/Marine_Worms08.Asp)
23. Jacobsson E, Andersson HS, Strand M, et al. Peptide Ion Channel Toxins From The Bootlace Worm, The Longest Animal On Earth. Sci Rep 2018; 8: 4596. [DOI:10.1038/s41598-018-22305-w]
24. Markosova TG, Zaitseva OV, Smirnov RV. Monoamine- And Peptide-Containing Elements In The Nemertine Digestive Tract. J Evol Biochem Physiol 2007; 43: 69-79. [DOI:10.1134/S0022093007010073]
25. Zaitseva OV, Markosova TG, Smirnov RV. Monoamine- And Peptide-Containing Elements In The Body Wall And Nervous Trunks Of Nemerteans. Russ J Mar Biol 2007; 33: 245-53. [DOI:10.1134/S1063074007040074]
26. Kajihara H, Chernyshev AV, Sun SC, et al. Checklist Of Nemertean Genera And Species Published Between 1995 And 2007. Spec Div 2008; 13(4): 245-74. [DOI:10.12782/specdiv.13.245]
27. Moore J, Gibson R, Jones HD. Terrestrial Nemerteans Thirty Years On. Hydrobiologia 2001; 456: 1-6. [DOI:10.1023/A:1013052728257]
28. Sundberg P, Gibson R. Global Diversity Of Nemerteans (Nemertea) In Freshwater. Hydrobiologia 2008; 595: 61-6. [DOI:10.1007/s10750-007-9004-6]
29. Dettner K. Chemical Defense And Toxins Of Lower Terrestrial And Freshwater Animals. Reference Module In Chemistry, Molecular Sciences And Chemical Engineering . Comprehensive Natural Products II. Chem Biol 2010; 4: 387-410. (Available at https://Doi.Org/10.1016/B978-008045382- 8.00100-3) [DOI:10.1016/B978-008045382-8.00100-3]
30. Reisinger E, Kelbetz S. Feinbau Und Entladungsmechanismus Der Rhabditen. Z Wiss Mikrosk 1964; 65: 472-508.
31. Martin GG. A New Function Of Rhabdites: Mucus Production For Ciliary Gliding. Zoomorphologie 1978; 91: 235-48. [DOI:10.1007/BF00999813]
32. Blaustein L, Dumont HJ. Typhloplanid Flatworms (Mesostoma And Related Genera): Mechanisms Of Predation And Evidence That They Structure Aquatic Invertebrate Communities. Hydrobiologia 1990; 198: 61-77. [DOI:10.1007/BF00048623]
33. Dumont HJ, Carets I. Flatworm Predator (Mesostoma Cf. Lingua) Releases A Toxin To Catch Planktonic Prey (Daphnia Magna). Limnol Oceanogr 1987; 32(3): 699-702. [DOI:10.4319/lo.1987.32.3.0699]
34. Göransson U, Jacobsson E, Strand M, et al. The Toxins Of Nemertean Worms. Toxins 2019; 11(2): 120. [DOI:10.3390/toxins11020120]
35. Kem WR. Worm Venom Peptides. Chapter 57, In Handbook Of Biologically Active Peptides; Kastin AJ, editors. Burlington, VT, USA: Academic Press, 2006, 397-401. [DOI:10.1016/B978-012369442-3/50060-X]
36. Mcdermott JJ. Status Of The Nemertea As Prey In Marine Ecosystems. Hydrobiologia 2001; 456: 7-20. [DOI:10.1023/A:1013001729166]
37. Thie M, Kruse I. Status Of The Nemertea As Predators In Marine Ecosystems. Hydrobiologia 2001; 456: 21-32. [DOI:10.1023/A:1013005814145]
38. Johnston G. Miscellanea Zoologica. A Description Of Some Planarian Worms. Mag Zool Bot 1837; 1: 529-38.
39. Strand M, Norenburg J, Alfaya JE, et al. Nemertean Taxonomy-Implementing Changes In The Higher Ranks, Dismissing Anopla And Enopla. Zool Scr 2019; 48(1): 118-19. [DOI:10.1111/zsc.12317]
40. Stricker SA, Cloney RA. The Stylet Apparatus Of The Nemertean Paranemertes Peregrina: Its Ultrastructure And Role In Prey Capture. Zoomorphology 1981; 97: 205-23. [DOI:10.1007/BF00310277]
41. Stricker SA, Cloney RA. The Ultrastructure Of Venom-Producing Cells In Paranemertes Peregrine (Nemertea, Hoplonemertea). J Morphol 1983; 177(1): 89-107. [DOI:10.1002/jmor.1051770108]
42. Montalvo S, Roldan C, Junoy J, et al. Ultrastructural Study Of Two Glandular Systems In The Proboscidial Glandular Epithelium Of Riseriellus Occultus (Nemertea, Heteronemertea). Zoomorphology 1998; 117: 247-57. [DOI:10.1007/s004350050049]
43. Magarlamov TY, Chernyshev AV, Turbeville JM. Pseudocnidae Of Archinemerteans (Nemertea, Palaeonemertea) And Their Implications For Nemertean Systematics. J Morphol 2018; 279(10): 1444-54. [DOI:10.1002/jmor.20881]
44. Strand M, Hedström M, Seth H, et al. The Bacterial (Vibrio Alginolyticus) Production Of Tetrodotoxin In The Ribbon Worm Lineus Longissimus-Just A False Positive?. Mar Drugs 2016; 14(4): 63. [DOI:10.3390/md14040063]
45. Rodrigo AP, Lopes AR, Baptista PV, et al. The Great Biotechnological Potential Of A Marine Polychaete: An Alliance Between Toxin And Natural Fluorescence. Front Mar Sci. Conference Abstract: IMMR'18, International Meeting On Marine Research, 2019. (Available at Doi:10.3389/Conf.FMARS.2018.06.00015) [DOI:10.3389/conf.FMARS.2018.06.00015]
46. Mcdermott JJ, Roe P. Food, Feeding Behavior And Feeding Ecology Of Nemerteans. Am Zool 1985; 25(1): 113-25. [DOI:10.1093/icb/25.1.113]
47. Napier VR, Turpie JK, Clark BM. Value And Management Of The Subsistence Fishery At Knysna Estuary, South Africa. Afr J Mar Sci 2009; 31(3): 297-310. [DOI:10.2989/AJMS.2009.]
48. Kajihara H, Sun SC, Chernyshev AV, et al. Taxonomic Identity Of A Tetrodotoxin-Accumulating Ribbon-Worm Cephalothrix Simula (Nemertea: Palaeonemertea): A Species Artificially Introduced From The Pacific To Europe. Zoolog Sci 2013; 30(11): 985-97. [DOI:10.2108/zsj.30.985]
49. Jennings JB, Gibson R. Observations On The Nutrition Of Seven Species Of Rhynchocoelan Worms. Biol Bull 1969; 136(3): 405-33. [DOI:10.2307/1539685]
50. Moles J, Núñez-Pons L, Taboada S, et al. Anti-Predatory Chemical Defences In Antarctic Benthic Fauna. Mar Biol 2015; 162: 1813-21. [DOI:10.1007/s00227-015-2714-9]
51. Kruse I, Buhs F. Preying at The Edge Of The Sea: The Nemertine Tetrastemma Melanocephalum And Its Amphipod Prey On High Intertidal Sandflats. Hydrobiologia 2000; 426: 43-55. [DOI:10.1023/A:1003955523468]
52. Kem WR. A Study Of The Occurrence Of Anabaseine In Paranemertes And Other Nemertines. Toxicon 1971; 9(1): 23-32. [DOI:10.1016/0041-0101(71)90040-7]
53. Caplins SA, Turbeville JM. The Occurrence Of Ramphogordius Sanguineus (Nemertea, Heteronemertea) In The Intertidal Zone Of The Atlantic Coast Of Virginia And New Observations On Its Feeding Behavior. Banisteria 2011; 38: 65-70.
54. Bourque D, Miron G, Landry T. Predator- Prey Relationship Between The Nemertean Cerebratulus Lacteus And The Soft-Shell Clam, Mya Arenaria: Surface- Exploration Activity And Qualitative Observations On Feeding Behaviour. Can J Zool 2002; 80(7): 1204-11. [DOI:10.1139/z02-095]
55. Beckers P, Bartolomaeus T, Von Döhren J. Observations And Experiments On The Biology And Life History Of Riseriellus Occultus (Heteronemertea: Lineidae). Zoolog Sci 2015; 32(6): 531-46. [DOI:10.2108/zs140270]
56. Jensen K, Sadeghian PS. Nemerteans (Ribbon Worms). In: Rohde K, editor. Marine Parasitology. Clayton, Australia: CSIRO Publishing, 2005, 205-10.
57. Gibson R. Studies On The Biology Of The Entocommensal Rhynchocoelan Malacobdella Grossa. J Mar Biol Assoc UK 1968; 48(3): 637-56. [DOI:10.1017/S0025315400019202]
58. Roe P. Laboratory Studies Of Feeding And Mating In Species Of Carcinonemertes (Nemertea: Hoplonemertea). Biol Bull 1984; 167(2): 426-36. [DOI:10.2307/1541287]
59. Kuris AM, Wickham DE. Effect Of Nemertean Egg Predators On Crustaceans. Bull Mar Sci 1987; 41(2): 151-64.
60. Whelan NV, Kocot KM, Santos SR, et al. Nemertean Toxin Genes Revealed Through Transcriptome Sequencing. Genome Biol Evol 2014; 6(12): 3314-25. [DOI:10.1093/gbe/evu258]
61. Melnikova DI, Beleneva IA, Tyunin AP, et al. The Taxonomic Composition, Characteristics, And Neurotoxic Activities Of Ribbon Worm-Associated Bacteria From The Sea Of Japan. Russ J Mar Biol 2017; 43: 383-91. [DOI:10.1134/S1063074017050066]
62. Asakawa M, Katsutoshi I, Kajihara H. Highly Toxic Ribbon Worm Cephalothrix Simula Containing Tetrodotoxin In Hiroshima Bay, Hiroshima Prefecture, Japan. Toxins 2013; 5(2): 376-95. [DOI:10.3390/toxins5020376]
63. Kem WR. Pyridine Alkaloid Distribution In The Hoplonemertines. Hydrobiologia 1988; 156: 145-51. [DOI:10.1007/BF00027988]
64. Magnus O. Historia De Gentibus Septentrionalibus, Rome 1555. Translated Into Swedish. 1909, 1925.
65. Borlase W. The Natural History Of Cornwall. Wilmington, NC, USA: Coastal, 1758.
66. Wilson CB. The Habits And Early Development Of Cerebratulus Lacteus (Verrill) J. And A. A Contribution To Physiological Morphology. London, UK: Churchill Ltd, 1900.
67. Reisinger E. Nemertini. Biol Tiere Deutchl 1926; 1: 1-24.
68. Bacq ZM. Les Poisons Des Nemertiens. Bull Cl Sci Acad Roy Belg 1936; 22(5): 1072-9.
69. Bacq ZM. L'"Amphiporine" Et La "Nemertine", Poisons Des Vers Némertiens. Arch Int Physiol 1937; 44: 109-24. [DOI:10.3109/13813453709145202]
70. Kem WR. Biochemistry Of Nemertine Toxins. Marine Pharmacognosy. Action Of Marine Biotoxins At The Cellular Level. In: Martin D, Padilla G, editors. New York, NY, USA: Academic Press, 1973, 38-85. [DOI:10.1016/B978-0-12-474550-6.50007-5]
71. Kem WR, Abbott BC, Coates RM. Isolation And Structure Of A Hoplonemertine Toxin. Toxicon 1971; 9(1): 15-22. [DOI:10.1016/0041-0101(71)90039-0]
72. Kem WR, Mahnir VM, Papke RL, et al. Anabaseine Is A Potent Agonist Upon Muscle And Neuronal Alpha-Bungarotoxin Sensitive Nicotinic Receptors. J Pharmacol Exp Ther 1997; 283(3): 979-92.
73. Catterall WA. Structure And Regulation Of Voltage-Gated Ca2+ Channels. Annu Rev Cell Dev Biol 2000; 16: 521-55. [DOI:10.1146/annurev.cellbio.16.1.521]
74. Kem WR. The Brain Alpha7 Nicotinic Receptor May Be An Important Therapeutic Target For The Treatment Of Alzheimer's Disease: Studies With DMXBA (GTS-21). Behav Brain Res 2000; 113(1-2): 169-81. [DOI:10.1016/S0166-4328(00)00211-4]
75. Kem WR, Scott KN, Duncan JH. Hoplonemertine Worms-A New Source Of Pyridine Neurotoxins. Experientia 1976; 32(6): 684-6. [DOI:10.1007/BF01919831]
76. Cruskie MPJ, Zoltewicz JA, Abboud KA. Revised Structure And Convergent Synthesis Of Nemertelline, The Neurotoxic Quaterpyridine Isolated From The Hoplonemertine Sea Worm. J Org Chem 1995; 60(23): 7491-5. [DOI:10.1021/jo00128a021]
77. Kem WR, Soti F. Amphiporus Alkaloid Multiplicity Implies Functional Diversity: Initial Studies On Crustacean Pyridyl Receptors. Hydrobiologia 2001; 456: 221-31. [DOI:10.1023/A:1013063726807]
78. Kem WR, Rocca J, Garraffo HM, et al. Synthesis And Spectroscopic Copmarison Of The Eight Methyl-2,3′-Bipyridyls And Identification Of A Hoplonemertine Alkaloid As 3-Methyl-2,3′-Bipyridyl. Heterocycles 2009; 79(1): 1025-41. [DOI:10.3987/COM-08-S(D)80]
79. Kem WR, Soti F, Rittschof D. Inhibition Of Barnacle Larval Settlement And Crustacean Toxicity Of Some Hoplonemertine Pyridyl Alkaloids. Biomol Eng 2003; 20(4-6): 355-61. [DOI:10.1016/S1389-0344(03)00049-2]
80. Kem WR, Soti F, Rittschof D. Materials And Methods For Inhibiting Fouling Of Surfaces Exposed To Aquatic Environments. Patent US730717B2, U.S., 2006.
81. Meyer EM, Arendash G, Judkins JH, et al. Effects Of Nucleus Basalis Lesions On The Muscarinic And Nicotinic Modulation Of (3H) Acetylcholine Release In The Rat Cerebral Cortex. J Neurochem 1987; 49(6): 1758-62. [DOI:10.1111/j.1471-4159.1987.tb02433.x]
82. Zoltewicz JA, Bloom LB, Kem WR. Quantitative Determination Of The Ring-Chain Hydrolysis Equilibrium Constant For Anabaseine And Related Tobacco Alkaloids. J Org Chem 1989; 54(18): 4462-8. [DOI:10.1021/jo00279a042]
83. Hunter BE, De Fiebre CM, Papke RL, et al. A Novel Nicotinic Agonist Facilitates Induction Of Long-Term Potentiation In The Rat Hippocampus. Neurosci Lett 1994; 168(1-2): 130-4. [DOI:10.1016/0304-3940(94)90433-2]
84. Sahakian B, Jones G, Levy R, et al. The Effects Of Nicotine On Attention, Information Processing, And Short-Term Memory In Patients With Dementia Of The Alzheimer Type. Br J Psychiatry 1989; 154: 797-800. [DOI:10.1192/bjp.154.6.797]
85. Woodruff-Pak DS, Li YT, Kem WR. A Nicotinic Agonist (GTS-21), Eyeblink Classical Conditioning, And Nicotinic Receptor Binding In Rabbit Brain. Brain Res 1994; 645(1-2): 309-17. [DOI:10.1016/0006-8993(94)91665-9]
86. Meyer EM, Tay ET, Papke RL, et al. 3-(2,4-Dimethoxybenzylidene) Anabaseine (DMXB) Selectively Activates Rat Α7 Receptors And Improves Memory-Related Behaviors In A Mecamylamine-Sensitive Manner. Brain Res 1997; 768(1-2): 49-56. [DOI:10.1016/S0006-8993(97)00536-2]
87. Zawieja P, Kornprobst JM, Métais P. 3-(2,4-Dimethoxybenzylidene)-Anabaseine: A Promising Candidate Drug For Alzheimer's Disease?. Geriatr Gerontol Int 2012; 12(3): 365-71. [DOI:10.1111/j.1447-0594.2011.00827.x]
88. Kem W, Soti F, Wildeboer K, et al. The nemertine toxin anabaseine and its derivative DMXBA (GTS-21): Chemical and pharmacological properties. Marine Drugs 2006; 4(3): 255-73. [DOI:10.3390/md403255]
89. Kline JK. Behavioral Responses Of The Spiny Lobster (Panulirus Argus) To Live Amphiporous Angulatus And Its Bipyridyl Toxins, 1986. Biology Senior Project Report, Kalamazoo College. (Accessed March 13, 2020, at http://hdl.handle.net/10920/23073)
90. Woodward RB. The Structure Of Tetrodotoxin. Pure Appl Chem 1964; 9(1): 49-74. [DOI:10.1351/pac196409010049]
91. Tsuda K, Ikuma S, Kawamura M, et al. Tetrodotoxin. VII. On The Structures Of Tetrodotoxin And Its Derivatives. Chem Pharm Bull (Tokyo) 1964; 12(11): 1357-74. [DOI:10.1248/cpb.12.1357]
92. Goto T, Kishi Y, Takahashi S, et al. Tetrodotoxin. Tetrahedron 1965; 21(8): 2059-88. [DOI:10.1016/S0040-4020(01)98344-9]
93. Onyabu N, Nishikawa T, Isobe M. First Asymmetric Total Synthesis Of Tetrodotoxin. J Am Chem Soc 2003; 125(29): 8798-805. [DOI:10.1021/ja0342998]
94. Noguchi T, Arakawa O. TetrodotoxinDistribution And Accumulation In Aquatic Organisms, And Cases Of Human Intoxication. Mar Drugs 2008; 6(2): 220-42. [DOI:10.3390/md20080011]
95. Miyazawa K, Noguchi T. Distribution And Origin Of Tetrodotoxin. J Toxicol Toxin Rev 2001; 20(1): 11-33. [DOI:10.1081/TXR-100103081]
96. Chau R, Kalaitzis JA, Neilan BA. On The Origins And Biosynthesis Of Tetrodotoxin. Aquat Toxicol 2011; 104(1-2): 61-72. [DOI:10.1016/j.aquatox.2011.04.001]
97. Hwang DF, Noguchi T. Tetrodotoxin Poisoning. Adv Food NutrRes 2007; 52: 141-236. [DOI:10.1016/S1043-4526(06)52004-2]
98. Hanifin CT. The Chemical And Evolutionary Ecology Of Tetrodotoxin (TTX) Toxicity In Terrestrial Vertebrates. Mar Drugs 2010; 8(3): 577-93. [DOI:10.3390/md8030577]
99. Stevens M, Peigneur S, Tytgat J. Neurotoxins And Their Binding Areas On Voltage-Gated Sodium Channels. Front Pharmacol 2011; 2: 71. [DOI:10.3389/fphar.2011.00071]
100. Blankenship JE. Tetrodotoxin: From Poison To Powerful Tool. Perspect Biol Med 1976; 19(4): 509-26. [DOI:10.1353/pbm.1976.0071]
101. Fozzard H, Lipkind G. The Tetrodotoxin Binding Site Is Within The Outer Vestibule Of The Sodium Channel. Mar Drugs 2010; 8(2): 219-34. [DOI:10.3390/md8020219]
102. Nieto FR, Cobos EJ, Tejada MÁ, et al. Tetrodotoxin (TTX) As A Therapeutic Agent For Pain. Mar Drugs 2012; 10(2): 281-305. [DOI:10.3390/md10020281]
103. Magarlamov TY, Melnikova DI, Chernyshev AV. Tetrodotoxin-Producing Bacteria: Detection, Distribution And Migration Of The Toxin In Aquatic Systems. Toxins 2017; 9(5): 166. [DOI:10.3390/toxins9050166]
104. Bane V, Lehane M, Dikshit M, et al. Tetrodotoxin: Chemistry, Toxicity, Source, Distribution And Detection. Toxins 2014; 6(2): 693-755. [DOI:10.3390/toxins6020693]
105. Zhou M, Shum FHK. Method Of Extracting Tetrodotoxin. Patent US6552191B1, U.S., 2003.
106. Piel J. Metabolites From Symbiotic Bacteria. Nat Prod Rep 2004; 21(4): 519-38. [DOI:10.1039/b310175b]
107. Miyazawa K, Higashiyama M, Ito K, et al. Tetrodotoxin In Two Species Of Ribbon Worm (Nemertini), Lineus Fuscoviridis And Tubulanus Punctatus. Toxicon 1988; 26(9): 867-74. [DOI:10.1016/0041-0101(88)90327-3]
108. Ali AE, Arakawa O, Noguchi T, et al. Tetrodotoxin And Related Substances In A Ribbon Worm Cephalothrix Linearis (Nemertean). Toxicon 1990; 28(9): 1083-93. [DOI:10.1016/0041-0101(90)90147-Y]
109. Noguchi T, Ali AE, Arakawa O, et al. Tetrodonic Acid-Like Substance; A Possible Precursor Of Tetrodotoxin. Toxicon 1991; 29(7): 845-55. [DOI:10.1016/0041-0101(91)90221-C]
110. Takatani T, Akaeda H, Arakawa O, et al. Occurrence Of Paralytic Shellfish Poison (PSP) In Bivalves, Along With Mossworm Adherent To Their Shells, Collected From Fukue Island, Nagasaki, Japan During 1995 And 1996. J Food Hyg Soc Japan 1997; 38(6): 430-4. [DOI:10.3358/shokueishi.38.6_430]
111. Asakawa M, Toyoshima T, Shida Y, et al. Paralytic ToxinsIn A Ribbon Worm Cephalothrix Species (Nemertean) Adherent To Cultured Oysters In Hiroshima Bay, Hiroshima Prefecture, Japan. Toxicon 2000; 38(6): 763-73. [DOI:10.1016/S0041-0101(99)00172-5]
112. Ueda H, Itoi S, Sugita H. TTX-Bearing Planocerid Flatworm (Platyhelminthes: Acotylea) In The Ryukyu Islands, Japan. Mar Drugs 2018; 16(1): 37. [DOI:10.3390/md16010037]
113. Carroll S, Mcevoy EG, Gibson R. The Production Of Tetrodotoxin-Like Substances By Nemertean WormsIn Conjunction With Bacteria. J Exp Mar Biol Ecol 2003; 288(1): 51-63. [DOI:10.1016/S0022-0981(02)00595-6]
114. Mcevoy EG, Rogers A, Gibson R. Preliminary Investigation Of Vibrio Alginolyticus-Like Bacteria Associated With Marine Nemerteans. Hydrobiologia 1997; 365: 287-91. [DOI:10.1023/A:1003174320123]
115. Strand M, Sundberg P. Sustainable Method For Synthesizing Tetrodotoxin (TTX). Patent US20110081690A1, U.S., 2011.
116. Matsumura K. No Ability To Produce Tetrodotoxin In Bacteria. Appl Environ Microbiol 2001; 67(5): 2393-4. [DOI:10.1128/AEM.8.3.2393-2394.2001]
117. Salvitti L, Wood SA, Mcnabb P, et al. No Evidence For A Culturable Bacterial Tetrodotoxin Producer In Pleurobranchaea Maculate (Gastropoda: Pleurobranchidae) And Stylochoplana Sp. (Platyhelminthes: Polycladida). Toxins 2015; 7(2): 255-73. [DOI:10.3390/toxins7020255]
118. Salvitti L, Wood SA, Taylor DI, et al. First Identification Of Tetrodotoxin (TTX) In The Flatworm Stylochoplana Sp.; A Source Of TTX For The Sea Slug Pleurobranchaea Maculate. Toxicon 2015; 95(1): 23-9. [DOI:10.1016/j.toxicon.2014.12.006]
119. Tanu MB, Mahmud Y, Arakawa O, et al. Immunoenzymatic Visualization Of Tetrodotoxin (TTX) In Cephalothrix Species (Nemertea: Anopla: Palaeonemertea: Cephalotrichidae) And Planocera Reticulate (Platyhelminthes: Turbellaria: Polycladida: Planoceridae). Toxicon 2004; 44(5): 515-20. [DOI:10.1016/j.toxicon.2004.06.014]
120. Vlasenko AE, Velansky PV, Chernyshev AV, et al. Tetrodotoxin And Its Analogues Profile In Nemertean Species From The Sea Of Japan. Toxicon 2018; 156: 48-51. [DOI:10.1016/j.toxicon.2018.11.006]
121. Kwon YS, Min SK, Yeon SJ, et al. Assessment Of Neuronal Cell-Based Cytotoxicity Of Neurotoxins From An Estuarine Nemertean In The Han River Estuary. J Microbiol Biotechnol 2017; 27(4): 725-30. [DOI:10.4014/jmb.1611.11027]
122. Turner A, Fenwick D, Powell A, et al. New Invasive Nemertean Species (Cephalothrix Simula) In England With High Levels Of Tetrodotoxin And A Microbiome Linked To Toxin Metabolism. Mar Drugs 2018; 16(11): 452. [DOI:10.3390/md16110452]
123. Beleneva I, Magarlamov TY, Kukhlevsky A. Characterization, Identification, And Screening For Tetrodotoxin Production By Bacteria Associated With The Ribbon Worm (Nemertea) Cephalotrix Simula (Ivata, 1952). Microbiology 2014; 83(3): 220-6. [DOI:10.1134/S0026261714030059]
124. Magarlamov TY, Beleneva IA, Chernyshev AV, et al. Tetrodotoxin-Producing Bacillus Sp. From The Ribbon Worm (Nemertea) Cephalothrix Simula (Iwata, 1952). Toxicon 2014; 85: 46-51. [DOI:10.1016/j.toxicon.2014.04.015]
125. Asakawa M, Toyoshima T, Ito K, et al. Paralytic Toxicity In The Ribbon Worm Cephalothrix Species (Nemertea) In Hiroshima Bay, Hiroshima Prefecture, Japan And The Isolation Of Tetrodotoxin As A Main Component Of Its Toxins. Toxicon 2003; 41(7): 747-53. [DOI:10.1016/S0041-0101(03)00009-6]
126. Lousalet M, Campbell ME, Schwartz ML. Microdistribution Of Tetrodotoxin In Three Species Of Nemerteans [Abstract]. Proceedings Of The 7th International Conference On Nemertean Biology. 2009 July. 29 June-3 July, Santa Barbara, CA, USA.
127. Magarlamov TY, Shokur OA, Chernyshev AV. Distribution Of Tetrodotoxin In The Ribbon Worm Lineus Alborostratus (Takakura, 1898) (Nemertea): Immunoelectron And Immunofluorescence Studies. Toxicon 2016; 112: 29-34. [DOI:10.1016/j.toxicon.2016.01.060]
128. Campbell ME, Schwartz ML. Immunohistological Visualization Of Tetrodotoxin In Micrura Verrili And Dushia Atra (Phylum Nemertea), 2008. (Accessed February 20, 2020, at:https://apps.cur.org/ncur2018/Archive/Display_NCUR.Aspx?Id=10545)
129. Andersson HS, Jacobssonb E, Erikssonb C, et al. The Toxicity Of Ribbon Worms: Alpha-Nemertides Or Tetrodotoxin, Or Both?. Planta Med 2016; 81(S 01): S1-S381. [DOI:10.1055/s-0036-1596617]
130. Kem WR. Purification And Characterization Of A New Family Of Polypeptide Neurotoxins From The Heteronemertine Cerebratulus Lacteus (Leidy). J Biol Chem 1976; 251(14): 4184-92. [DOI:10.1016/S0021-9258(17)33279-9]
131. Blumenthal KM, Kem WR. Structure And Action Of Heteronemertine Polypeptide Toxins. Primary Structure Of Cerebratulus Lacteus Toxin B-IV. J Biol Chem 1976; 251(19): 6025-9. [DOI:10.1016/S0021-9258(17)33054-5]
132. Blumenthal KM, Keim PS, Heinrikson RL, et al. Structure And Action Of Heteronemertine Polypeptide Toxins. Amino Acid Sequence Of Cerebratulus Lacteus Toxin B-II And Revised Structure Of Toxin B-IV. J Biol Chem 1981; 256(17): 9063-7. [DOI:10.1016/S0021-9258(19)52508-X]
133. Blumenthal KM, Kem WR. Structure And Action Of Heteronemertine Polypeptide Toxins: Inactivation Of Cerebratulus Lacteus Toxin B-IV By Tyrosine Nitration. Arch Biochem Biophys 1980; 203(2): 816-21. [DOI:10.1016/0003-9861(80)90243-X]
134. Blumenthal KM. Structure And Action Of Heteronemertine Polypeptide Toxins: Inactivation Of Cerebratulus Lacteus Toxin B-IV Concomitant With Tryptophan Alkylation. Arch Biochem Biophys 1980; 203(2): 822-6. [DOI:10.1016/0003-9861(80)90244-1]
135. Blumenthal KM. Renaturation Of Neurotoxin B-IV From The Heteronemertine Cerebratulus Lacteus. Toxicon 1986; 24(1): 63-9. [DOI:10.1016/0041-0101(86)90166-2]
136. Toth GP, Blumenthal KM. Structure And Action Of Heteronemertine Polypeptide Toxins: Binding Of Cerebratulus Lacteus Toxin B-IV To Axon Membrane Vesicles. Biochim Biophys Acta (BBA) - Biomembranes 1983; 732(1): 160-9. [DOI:10.1016/0005-2736(83)90199-2]
137. Lieberman DL, Blumenthal KM. Structure And Action Of Heteronemertine Polypeptide Toxins. Specific Cross-Linking Of Cerebratulus Lacteus Toxin B-IV To Lobster Axon Membrane Vesicles. Biochim Biophys Acta (BBA) - Biomembranes 1986; 855(1): 41-8. [DOI:10.1016/0005-2736(86)90186-0]
138. Kem WR, Tu CK, Williams RW, et al. Circular Dichroism And Laser Raman Spectroscopic Analysis Of The Secondary Structure Of Cerebratulus Lacteus Toxin B-IV. J Protein Chem 1990; 9: 433-43. [DOI:10.1007/BF01024619]
139. Hansen PE, Kem WR, Bieber AL, et al. 1H-NMR Study Of Neurotoxin B-IV From The Marine Worm Cerebratulus Lacteus. Solution Properties, Sequence-Specific Resonance Assignments, Secondary Structure And Global Fold. Eur J Biochem 1992; 210(1): 231-40. [DOI:10.1111/j.1432-1033.1992.tb17413.x]
140. Barnham KJ, Dyke TR, Kem WR, et al. Structure Of Neurotoxin B-IV From The Marine Worm Cerebratulus Lacteus: A Helical Hairpin Cross-Linked By Disulphide Bonding. J Mol Biol 1997; 268(5): 886-902. [DOI:10.1006/jmbi.1997.0980]
141. Howell ML, Blumenthal KM. Cloning And Expression Of A Synthetic Gene For Cerebratulus Lacteus Neurotoxin B-IV. J Biol Chem 1989; 264(26): 15268-73. [DOI:10.1016/S0021-9258(19)84820-2]
142. Howell ML, Blumenthal KM. Mutagenesis Of Cerebratulus Lacteus Neurotoxin B-IV Identifies NH2-Terminal Sequences Important For Biological Activity. J Biol Chem 1991; 266: 12884-8. [DOI:10.1016/S0021-9258(18)98777-6]
143. Wen PH, Blumenthal KM. Role Of Electrostatic Interactions In Defining The Potency Of Neurotoxin B-IV From Cerebratulus Lacteus. J Biol Chem 1996; 271(47): 29752-8. [DOI:10.1074/jbc.271.47.29752]
144. Wen PH, Blumenthal KM. Structure And Function Of Cerebratulus Lacteus Neurotoxin B-IV: Tryptophan-30 Is Critical For Function While Lysines-18, -19, -29, And -33 Are Not Required. Biochemistry 1997; 36(43): 13435-40. [DOI:10.1021/bi970957n]
145. Blumenthal KM. Structure And Action Of Heteronemertine Polypeptide Toxins. Disulfide Bonds Of Cerebratulus Lacteus Toxin A-III. J Biol Chem 1980; 255(17): 8273-4. [DOI:10.1016/S0021-9258(19)70642-5]
146. Kem WR, Blumenthal KM. Purification And Characterization Of The Cytotoxic Cerebratulus A Toxins. J Biol Chem 1978; 253(16): 5752-7. [DOI:10.1016/S0021-9258(17)30331-9]
147. Posner P, Kem WR. Cardiac Effects Of Toxin A-III From The Heteronemertine Worm Cerebratulus Lacteus (Leidy). Toxicon 1978; 16(4): 343-9. [DOI:10.1016/0041-0101(78)90154-X]
148. Kuo J, Raynor RL, Mazzei GJ, et al. Cobra Polypeptide Cytotoxin I And Marine Worm Polypeptide Cytotoxin A-IV Are Potent And Selective Inhibitors Of Phospholipid-Sensitive Ca2+ -Dependent Protein Kinase. FEBS Lett 1983; 153(1): 183-6. [DOI:10.1016/0014-5793(83)80144-6]
149. Blumenthal KM, Kem WR. Structure And Action Of Heteronemertine Polypeptide Toxins. Primary Structure Of Cerebratulus Lacteus Toxin A-III. J Biol Chem 1980; 255(17): 8266-72. [DOI:10.1016/S0021-9258(19)70641-3]
150. Blumenthal KM. Structure And Action Of Heteronemertine Polypeptide Toxins. Membrane Penetration By Cerebratulus Lacteus Toxin A-III. Biochemistry 1982; 21(18): 4229-33. [DOI:10.1021/bi00261a007]
151. Blumenthal KM. Release Of Liposomal Markers By Cerebratulus Toxin A-III. Biochem Biophys Res Commun 1984; 121(1): 14-8. [DOI:10.1016/0006-291X(84)90681-8]
152. Dumont JA, Blumenthal KM. Structure And Action Of Heteronemertine Polypeptide Toxins: Importance Of Amphipathic Helix For Activity Of Cerebratulus Lacteus Toxin A-III. Arch Biochem Biophys 1985; 236(1): 167-75. [DOI:10.1016/0003-9861(85)90616-2]
153. Liu JW, Blumenthal KM. Membrane Damage By Cerebratulus Lacteus Cytolysin A-III. Effects Of Monovalent And Divalent Cations On A-III Hemolytic Activity. Biochim Biophys Acta (BBA) - Biomembranes 1988; 937: 153-60. [DOI:10.1016/0005-2736(88)90237-4]
154. Liu J, Blumenthal KM. Identification Of Oleic Acid Binding Sites In Cytolysin A-III From The Heteronemertine Cerebratulus Lacteus. Toxicon 1991; 29(1): 13-20. [DOI:10.1016/0041-0101(91)90035-P]
155. Liu JW, Blumenthal KM. Functional Interaction Between Cerebratulus Lacteus Cytolysin A-III And Phospholipase A2. Implications For The Mechanism Of Cytolysis. J Biol Chem 1988; 263(14): 6619-24. [DOI:10.1016/S0021-9258(18)68686-7]
156. Fang M, Wang J, Han S, et al. Protective Effects Of Ω-Conotoxin On Amyloid-ΒInduced Damage In PC12 Cells. Toxicol Lett 2011; 206(3): 325-38. [DOI:10.1016/j.toxlet.2011.07.022]
157. Rodrigo AP, Costa MH, Alves De Matos AP, et al. A Study On The Digestive Physiology Of A Marine Polychaete (Eulalia Viridis) Through Microanatomical Changes Of Epithelia During The Digestive Cycle. Microsc Microanal 2015; 21(1): 91-101. [DOI:10.1017/S143192761401352X]
158. Kuzmenkov AI, Nekrasova OV, Kudryashova KS, et al. Fluorescent Protein-Scorpion Toxin Chimera Is A Convenient Molecular Tool For Studies Of Potassium Channels. Sci Rep 2016; 6: 1-10. [DOI:10.1038/srep33314]
159. Deheyn DD, Enzor LA, Dubowitz A, et al. Optical And Physicochemical Characterization Of The Luminous Mucous Secreted By The Marine Worm Chaetopterus Sp. Physiol Biochem Zool 2013; 86(6): 702-5. [DOI:10.1086/673869]
160. Heine JN, Mcclintock JB, Slattery M, et al. Energetic Composition, Biomass, And Chemical Defense In The Common Antarctic Nemertean Parborlasia Corrugatus (Mcintosh). J Exp Mar Biol Ecol 1991; 153(1): 15-25. [DOI:10.1016/S0022-0981(05)80003-6]
161. Mcclintock JB, Baker BJ. A Review Of The Chemical Ecology Of Antarctic Marine Invertebrates. Am Zool 1997; 37(4): 329-42. [DOI:10.1093/icb/37.4.329]
162. Berne S, Sepcic K, Krizaj I, et al. Isolation And Characterisation Of A Cytolytic Protein From Mucus Secretions Of The Antarctic Heteronemertine Parborlasia Corrugatus. Toxicon 2003; 41(4): 483-91. [DOI:10.1016/S0041-0101(02)00386-0]
163. Butala M, Sega D, Tomc B, et al. Recombinant Expression And Predicted Structure Of Parborlysin, A Cytolytic Protein From The Antarctic Heteronemertine Parborlasia Corrugatus. Toxicon 2015; 108: 32-7. [DOI:10.1016/j.toxicon.2015.09.044]
164. Rogers JC, Qu Y, Tanada TN, et al. Molecular Determinants Of High Affinity Binding Of Α-Scorpion Toxin And Sea Anemone Toxin In The S3-S4 Extracellular Loop In Domain IV Of The Na+ Channel Α Subunit. J Biol Chem 1996; 271(27): 15950-62. [DOI:10.1074/jbc.271.27.15950]
165. Solis PN, Wright CW, Anderson MM, et al. A Microwell Cytotoxicity Assay Using Artemia Salina (Brine Shrimp). Planta Med 1993; 59(3): 250-2. [DOI:10.1055/s-2006-959661]
166. Shiomi K, Kawashima Y, Mizukami M, et al. Properties Of Proteinaceous Toxins In The Salivary Gland Of The Marine Gastropod (Monoplex Echo). Toxicon 2002; 40(5): 563-71. [DOI:10.1016/S0041-0101(01)00256-2]
167. Luo YJ, Kanda M, Koyanagi R, et al. Nemertean And Phoronid Genomes Reveal Lophotrochozoan Evolution And The Origin Of Bilaterian Heads. Nat Ecol Evol 2018; 2(1): 141-51. [DOI:10.1038/s41559-017-0389-y]
168. Balasubramaniam A, Murphy RF, Blumenthal KM. Synthesis Of Sequences I-16, And 63-95 Of Cerebratulus Lacteus Toxin A-III. Hemolytic Activity In A Toxin Fragment. Int J Pept Protein Res 1986; 27(5): 508-13. [DOI:10.1111/j.1399-3011.1986.tb01049.x]
169. Shiomi K, Midorikawa S, Ishida M, et al. Plancitoxins, Lethal Factors From The Crown-Of-Thorns Starfish Acanthaster Planci, Are Deoxyribonucleases II. Toxicon 2004; 44(5): 499-506. [DOI:10.1016/j.toxicon.2004.06.012]
170. Ota E, Nagashima Y, Shiomi K, et al. Caspase-Independent Apoptosis Induced In Rat Liver Cells By Plancitoxin I, The Major Lethal Factor From The Crown-Of-Thorns Starfish Acanthaster Planci Venom. Toxicon 2006; 48(8): 1002-10. [DOI:10.1016/j.toxicon.2006.08.005]
171. Harvey AL. Toxins And Drug Discovery. Toxicon 2014; 92: 193-200. [DOI:10.1016/j.toxicon.2014.10.020]
172. Castañeda O, Sotolongo V, Amor AM, et al. Characterization Of A Potassium Channel Toxin From The Caribbean Sea Anemone Stichodactyla Helianthus. Toxicon 1995; 33(5): 603-13. [DOI:10.1016/0041-0101(95)00013-C]
173. Yan L, Herrington J, Goldberg E, et al. Stichodactyla Helianthus Peptide, A Pharmacological Tool For Studying Kv3.2 Channels. Mol Pharmacol 2005; 67(5): 1513-21. [DOI:10.1124/mol.105.011064]
174. Middleton RE, Sanchez M, Linde AR, et al. Substitution Of A Single Residue In Stichodactyla Helianthus Peptide, Shk-Dap22, Reveals A Novel Pharmacological Profile. Biochemistry 2003; 42(46): 13698-707. [DOI:10.1021/bi035209e]
175. Kalman K, Pennington MW, Lanigan MD, et al. Shk-Dap22, A Potent Kv1.3-Specific Immunosuppressive Polypeptide. J Biol Chem 1998; 273(49): 32697-707. [DOI:10.1074/jbc.273.49.32697]
176. Pennington MW, Byrnes ME, Zaydenberg I, et al. Chemical Synthesis And Characterization Of Shk Toxin: A Potent Potassium Channel Inhibitor From A Sea Anemone. Int J Pept Protein Res 1995; 46(5): 354-8. [DOI:10.1111/j.1399-3011.1995.tb01068.x]
177. Ueda A, Nagai H, Ishida M, et al. Purification And Molecular Cloning Of SE-Cephalotoxin, A Novel Proteinaceous Toxin From The Posterior Salivary Gland Of Cuttlefish Sepia Esculenta. Toxicon 2008; 52(4): 574-81. [DOI:10.1016/j.toxicon.2008.07.007]
178. Kawashima Y, Nagai H, Ishida M, et al. Primary Structure Of Echotoxin 2, An Actinoporin-Like Hemolytic Toxin From The Salivary Gland Of The Marine Gastropod Monoplex Echo. Toxicon 2003; 42(5): 491-7. [DOI:10.1016/S0041-0101(03)00226-5]
179. Xue Z, Liu X, Pang Y, et al. Characterization, Phylogenetic Analysis And Cdna Cloning Of Natterin-Like Gene From The Blood Of Lamprey, Lampetra Japonica. Immunol Lett 2012; 148(1): 1-10. [DOI:10.1016/j.imlet.2012.08.005]
180. Magalhaes GS, Lopes-Ferreira M, Junqueira-De-Azevedo ILM, et al. Natterins, A New Class Of Proteins With Kininogenase Activity Characterized From Thalassophryne Nattereri Fish Venom. Biochimie 2005; 87(8): 687-99. [DOI:10.1016/j.biochi.2005.03.016]
181. Diep DB, Nelson KL, Raja SM, et al. Glycosylphosphatidylinositol Anchors Of Membrane Glycoproteins Are Binding Determinants For The Channel-Forming Toxin Aerolysin. J Biol Chem 1998; 273: 2355-60. [DOI:10.1074/jbc.273.4.2355]
182. Degiacomi MT, Iacovache I, Pernot L, et al. Molecular Assembly Of The Aerolysin Pore Reveals A Swirling Membrane-Insertion Mechanism. Nat Chem Biol 2013; 9(10): 623-9. [DOI:10.1038/nchembio.1312]
183. Iacovache I, Paumard P, Scheib H, et al. A Rivet Model For Channel Formation By Aerolysin-Like Pore-Forming Toxins. EMBO J 2006; 25(3): 457-66. [DOI:10.1038/sj.emboj.7600959]
184. Iacovache I, Degiacomi MT, Pernot L, et al. Dual Chaperone Role Of The C-Terminal Propeptide In Folding And Oligomerization Of The Pore-Forming Toxin Aerolysin. PloS Pathog 2011; 7(7): e1002135. [DOI:10.1371/journal.ppat.1002135]
185. Rosado CJ, Kondos S, Bull TE, et al. The MACPF/CDC Family Of Pore-Forming Toxins. Cell Microbiol 2008; 10(9): 1765-74. [DOI:10.1111/j.1462-5822.2008.01191.x]
186. Riesgo A, Andrade SC, Sharma PP, et al. Comparative Description Of Ten Transcriptomes Of Newly Sequenced Invertebrates And Efficiency Estimation Of Genomic Sampling In Non-Model Taxa. Front Zool 2012; 9(1): 33. [DOI:10.1186/1742-9994-9-33]
187. Honma T, Hasegawa Y, Ishida M, et al. Isolation And Molecular Cloning Of Novel Peptide Toxins From The Sea Anemone Antheopsis Maculata. Toxicon 2005; 45(1): 33-41. [DOI:10.1016/j.toxicon.2004.09.013]
188. Dreon MS, Frassa MV, Ceolin M, et al. Novel Animal Defenses Against Predation: A Snail Egg Neurotoxin Combining Lectin And Pore-Forming Chains That Resembles Plant Defense And Bacteria Attack Toxins. PloS One 2013; 8(5): e63782. [DOI:10.1371/journal.pone.0063782]
189. Frassa MV, Ceolín M, Dreon MS, et al. Structure And Stability Of The Neurotoxin PV2 From The Eggs Of The Apple Snail Pomacea Canaliculata. Biochim Biophys Acta BBA - Proteins Proteom 2010; 1804(7): 1492-9. [DOI:10.1016/j.bbapap.2010.02.013]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | ISMJ

Designed & Developed by: Yektaweb