:: Volume 24, Issue 2 (Iranian South Medical Journal 2021) ::
Iran South Med J 2021, 24(2): 111-125 Back to browse issues page
Conocarpus Tree the Marine-Medicinal Treasure of Southern Iran: A Review of Botani-cal, Phytochemical and Medicinal Properties
Mehrangiz Chehrazi1 , Afshin Shirakani2, Reshad Balef3, Arezo Khoradmehr3, Nilofar Rasti3, Amin Tamadon 4
1- Department of Horticultural Science, School of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
3- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
4- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , amintamaddon@yahoo.com
Abstract:   (2263 Views)
Conocarpus is a tree with two flowering species of Conocarpus lancifolius and Conocarpus erectus. It is commonly known as, it is commonly known as sycamore tree or white buttonwood mangrove in Iran. It durable and can withstand conditions such as extremely high temperatures, low drainage, pressurized soil, air pollution, and salty water. In the past, this tree was used to treat various diseases such as diabetes, conjunctivitis, gonorrhea, and other infectious diseases. Recent studies have shown the antidiabetic, anticancer, antimicrobial, and antioxidant properties of various parts of Conocarpus including leaves, bark, stem, and fruit in laboratory and animal models. In addition, conocarpus is a natural purifier  and can be used to remove heavy metal contaminants and toxins from water, soil and air. As a biomarker, conocarpus can also be examined quantitatively and qualitatively for the amount of pollutants in different parts of the tree. To date, no scientific research has shown that conocarpus pollen is allergenic or immunogenic. In this botanological review article, the phytochemical and medicinal properties of this valuable tree in southern Iran was evaluated.
Keywords: Conocarpus, Phytochemistry, Herbal medicine, anti-cancer, anti-diabetic compounds
Full-Text [PDF 456 kb]   (1880 Downloads)    
Type of Study: Review | Subject: Pharmacology
Received: 2020/12/27 | Accepted: 2021/02/16 | Published: 2021/05/26
1. Aziz MA, Khan AH, Adnan M, et al. Traditional Uses Of Medicinal Plants Used By Indigenous Communities For Veterinary Practices At Bajaur Agency, Pakistan. J Ethnobiol Ethnomed 2018; 14(1): 11. https://doi.org/10.1186/s13002-017-0204-5 [DOI:10.1186/s13002-018-0212-0]
2. Christenhusz MJ, Byng JW. The Number Of Known Plants Species In The World And Its Annual Increase. Phytotaxa 2016; 261(3): 201-17. [DOI:10.11646/phytotaxa.261.3.1]
3. Allkin B. Useful Plants - Medicines: At Least 28,187 Plant Species Are Currently Recorded As Being Of Medicinal Use. In: Willis KJ, editor. State of the World's Plants 2017. London (UK): Royal Botanic Gardens, Kew, 2017.
4. Wang G, Tang W, Bidigare RR. Terpenoids As Therapeutic Drugs And Pharmaceutical Agents. In: Zhang L, Demain AL, editors. Natural Products, Springer, 2005, 197-227. [DOI:10.1007/978-1-59259-976-9_9]
5. Rosenthal G, Berenbaum M. Herbivores: Their Interactions With Secondary Plant Metabolites. 2 nd ed. Ecological And Evolutionary Processes. United States: Academic Press, 2012, 45-88.
6. Bouzeraa Bessila M. Chemical Study Of Two Natural Substances Extracted From Medicago Sativa Grown On Different Soils And Analysis Of Their Effects On The Growth Of Some Pathogenic Bacteria. Online J Sci Tech 2013; 3(1): 46-51.
7. Amouri H. Phenology Study And User Definition Of Two Species (Conocarpus Erectus L.) And (C. Lancifolius Engl.) In The Urban Green Space Of Ahvaz [dissertation]. Ahvaz: University Of Shahid Chamran Of Ahvaz, Iran, 2020.
8. Gilman EF, Watson DG. Conocarpus Erectus, Buttonwood. Fact Sheet ST-180 US Forest Service And Southern Group Of State Foresters. Gainesville, FL. 1993.
9. Abdel-Hameed ES, Bazaid S, Shohayeb M, et al. Phytochemical Studies And Evaluation Of Antioxidant, Anticancer And Antimicrobial Properties Of Conocarpus Erectus L. Growing In Taif, Saudi Arabia. Eur J Med Plants 2012; 2: 93-112. [DOI:10.9734/EJMP/2012/1040]
10. Rosa Galdino Bandeira A. Estudo Fitoquímico E Atividade Biológica De Conocarpus Erectus L. (Mangue Botão). Universidade Federal De Pernambuco, Recife, 2003.
11. Schoener TW. Leaf Damage In Island Buttonwood, Conocarpus Erectus: Correlations With Pubescence, Island Area, Isolation And The Distribution Of Major Carnivores. Oikos 1988; 53(2): 253-66. [DOI:10.2307/3566071]
12. Semple JC. The Distribution Of Pubescent Leaved Individuals Of Conocarpus Erectus (Combretaceae). Rhodora 1970; 72(792): 544-7.
13. Stearn WT. A Key To West Indian Mangroves. Kew Bull 1958; 13(1): 33-7. [DOI:10.2307/4117616]
14. Bailey LH, Bailey EZ. Hortus Third: A Concise Dictionary Of Plants Cultivated In The United States And Canada. New York: Macmillan Publishing, 1976, 306.
15. Eskandari Z, Maleki H, Neisi A, et al. Temporal Fluctuations Of PM 2.5 And PM 10, Population Exposure, And Their Health Impacts In Dezful City, Iran. J Environ Health Sci Eng 2020; 18(2): 723-31. [DOI:10.1007/s40201-020-00498-5] [PMID] [PMCID]
16. Al-Wabel MI, Usman AR, El-Naggar AH, et al. Conocarpus Biochar As A Soil Amendment For Reducing Heavy Metal Availability And Uptake By Maize Plants. Saudi J Biol Sci 2015; 22(4): 503-11. [DOI:10.1016/j.sjbs.2014.12.003] [PMID] [PMCID]
17. Nabeelah Bibi S, Fawzi MM, Gokhan Z, et al. Ethnopharmacology, Phytochemistry, And Global Distribution Of Mangroves-A Comprehensive Review. Mar Drugs 2019; 17(4): 231. [DOI:10.3390/md17040231] [PMID] [PMCID]
18. Nascimento DK, Souza IA, Oliveira AFD, et al. Phytochemical Screening And Acute Toxicity Of Aqueous Extract Of Leaves Of Conocarpus Erectus Linnaeus In Swiss Albino Mice. An Acad Bras Cienc 2016; 88(3): 1431-7. [DOI:10.1590/0001-3765201620150391] [PMID]
19. Raza MA, Anwar F, Shahwar D, et al. Antioxidant And Antiacetylcholine Esterase Potential Of Aerial Parts Of Conocarpus Erectus, Ficus Variegata And Ficus Maclellandii. Pak J Pharm Sci 2016; 29(2): 489-95.
20. Raza SA, Chaudhary AR, Mumtaz MW, et al. Antihyperglycemic Effect Of Conocarpus Erectus Leaf Extract In Alloxan-Induced Diabetic Mice. Pak J Pharm Sci 2018; 31(2 Suppl): 637-42.
21. Rehman S, Azam F, Rehman S, et al. A Review On Botanical, Phytochemical And Pharmacological Reports Of Conocarpus Erectus. Pak J Agric Res 2019; 32(1): 212-7. [DOI:10.17582/journal.pjar/2019/]
22. Mazloomzadeh S, Khazaghi ZR, Mousavinasab N. The Prevalence Of Metabolic Syndrome In Iran: A Systematic Review And Meta-Analysis. Iran J Public Health 2018; 47(4): 473-80.
23. Saadullah M, Chaudary B, Uzair M, et al. Antidiabetic Potential Of Conocarpus Lancifolius. Bangladesh J Pharmacol 2014; 9(2): 244-9. [DOI:10.3329/bjp.v9i2.18556]
24. Raza SA, Chaudhary AR, Mumtaz MW, et al. Metabolite Profiling And Antidiabetic Attributes Of Ultrasonicated Leaf Extracts Of Conocarpus Lancifolius. Asian Pac J Trop Biomed 2020; 10(8): 353-60. [DOI:10.4103/2221-1691.284430]
25. Keshmiri S, Pordel S, Raeesi A, et al. Environmental Pollution Caused By Gas And Petrochemical Industries And Its Effects On The Health Of Residents Of Assaluyeh Region, Irani-An Energy Capital: A Review Study. Iran South Med J 2018; 21(2): 162-85. [DOI:10.29252/ismj.21.2.162]
26. Ghasemi FF, Dobaradaran S, Saeedi R, et al. Levels And Ecological And Health Risk Assessment Of PM 2.5-Bound Heavy Metals In The Northern Part Of The Persian Gulf. Environ Sci Pollut Res 2020; 27: 5305-13. [DOI:10.1007/s11356-019-07272-7] [PMID]
27. Livingstone J. Natural Compounds In Cancer Therapy. Int J Pharmaceut Med 2001; 256. [DOI:10.2165/00124363-200110000-00017]
28. Mosquera OM, Correa YM, Buitrago DC, et al. Antioxidant Activity Of Twenty Five Plants From Colombian Biodiversity. Mem Inst Oswaldo Cruz 2007; 102(5): 631-4. [DOI:10.1590/S0074-02762007005000066] [PMID]
29. Sasaki YF, Kawaguchi S, Kamaya A, et al. The Comet Assay With 8 Mouse Organs: Results With 39 Currently Used Food Additives. Mutat Res 2002; 519(1-2): 103-19. [DOI:10.1016/S1383-5718(02)00128-6]
30. Buvaneswari S, Raadha CK, Krishnaveni N, et al. In-Vitro Antimicrobial Activity Of Psidium Guajava Against Clinically Important Strains. EJ Life Sci 2011; 1(1): 14-22.
31. Zampini IC, Cuello S, Alberto MR, et al. Antimicrobial Activity Of Selected Plant Species From "The Argentine Puna" Against Sensitive And Multi-Resistant Bacteria. J Ethnopharmacol 2009; 124(3): 499-505. [DOI:10.1016/j.jep.2009.05.011] [PMID]
32. Abdel-Hameed E, El-Nahas H, Abo-Sedera S. Antischistosomal And Antimicrobial Activities Of Some Egyptian Plant Species. Pharm Biol 2008; 46(9): 626-33. [DOI:10.1080/13880200802179543]
33. Barbour EK, Al Sharif M, Sagherian VK, et al. Screening Of Selected Indigenous Plants Of Lebanon For Antimicrobial Activity. J Ethnopharmacol 2004; 93(1): 1-7. [DOI:10.1016/j.jep.2004.02.027] [PMID]
34. Eloff JN, Katerere DR, Mcgaw LJ. The Biological Activity And Chemistry Of The Southern African Combretaceae. J Ethnopharmacol 2008; 119(3): 686-99. [DOI:10.1016/j.jep.2008.07.051] [PMID]
35. Ribeiro H, Guimarães F, Duque L, et al. Characterisation Of Particulate Matter On Airborne Pollen Grains. Environ Pollut 2015; 206: 7-16. [DOI:10.1016/j.envpol.2015.06.015] [PMID]
36. Ribeiro H, Costa C, Abreu I, et al. Effect Of O3 And NO2 Atmospheric Pollutants On Platanus X Acerifolia Pollen: Immunochemical And Spectroscopic Analysis. Sci Total Environ 2017; 599-600: 291-7. [DOI:10.1016/j.scitotenv.2017.04.206] [PMID]
37. Sun X, Waller A, Yeatts KB, et al. Pollen Concentration And Asthma Exacerbations In Wake County, North Carolina, 2006-2012. Sci Total Environ 2016; 544: 185-91. [DOI:10.1016/j.scitotenv.2015.11.100] [PMID]
38. Youn JS, Csavina J, Rine KP, et al. Hygroscopic Properties And Respiratory System Deposition Behavior Of Particulate Matter Emitted By Mining And Smelting Operations. Environ Sci Technol 2016; 50(21): 11706-13. [DOI:10.1021/acs.est.6b03621] [PMID] [PMCID]
39. Davies JM, Weber RW. Aerobiology Of Outdoor Allergens. In: Burks AW, Holgate ST, O'Hehir R, et al, eds. Middleton's Allergy 2-Volume Set: Principles And Practice. 2. 9th ed. Netherlands: Elsevier, 2020, 428-50.
40. Namjoyan F, Farasat M, Kiabi S, et al. Structural And Ultra-Structural Analysis Of Conocarpus Erectus Pollen Grains Before And After Dust Storms. Grana 2020; 59(2-3): 226-37. [DOI:10.1080/00173134.2019.1689290]
41. Diaz-Castelazo C, Rico-Gray V, Ortega F, et al. Morphological And Secretory Characterization Of Extrafloral Nectaries In Plants Of Coastal Veracruz, Mexico. Ann Bot 2005; 96(7): 1175-89. [DOI:10.1093/aob/mci270] [PMID] [PMCID]
42. De Lima Nadia T, Machado IC. Interpopulation Variation In The Sexual And Pollination Systems Of Two Combretaceae Species In Brazilian Mangroves. Aquat Bot 2014; 114: 35-41. [DOI:10.1016/j.aquabot.2013.12.003]
43. Nelson G. The Shrubs And Woody Vines Of Florida: A Reference And Field Guide. United States: Pineapple Press, 1996, 82-3.
44. Rad HD, Assarehzadegan MA, Goudarzi G, et al. Do Conocarpus Erectus Airborne Pollen Grains Exacerbate Autumnal Thunderstorm Asthma Attacks In Ahvaz, Iran?. Atmos Environ 2019; 213: 311-25. [DOI:10.1016/j.atmosenv.2019.06.010]
45. Villalba M, Barderas R, Mas S, et al. Amaranthaceae Pollens: Review Of An Emerging Allergy In The Mediterranean Area. J Investig Allergol Clin Immunol 2014; 24(6): 371-81.
46. Gholami A, Davami AH, Panahpour E, et al. Evaluation Of "Conocarpus Erectus" Plant As Biomonitoring Of Soil And Air Pollution In Ahwaz Region. Middle-East J Sci Res 2013; 13(10): 1319-24.
47. Salam M, Mohsin F, Mahmood F, et al. Lead And Manganese Accumulation On Leaves Of Road Side Plants From Mauripor To Hawks Bay Road, Karachi, Pakistan. Bangladesh J Bot 2015; 44(4): 665-8. [DOI:10.3329/bjb.v44i4.38648]
48. Ghouri IH, Ashiq U, Yasmeen K, et al. Assessing The Seasonal Variation Of Lead Content In Conocarpus Erectus: A Case Study Of An Urban Megacity. Int J Environ Anal Chem 2019; 21: 1-20.
49. Amininejad M, Maroosi A, Broomandnasab S, et al. Evaluation Of Nitrate Removal From Aqueous Solution By Nanostructure Of Conocarpus. J Irrigat Water Eng 2019; 10(1): 166-79. (Persian)
50. Farasati M, Heshmatpoor A. Removal Of Total Dissolved Solids From Contaminated Water Using Conocarpus Adsorbent. J Water Wastewater Sci Eng 2018; 3(3): 60-7. (Persian)
51. Pourmohammad P, Farasati M, Farhadi B, et al. Investigation Of Effect Of Influent Concentration On Cadmium Removal In A Fixedbed Column Using Adsorbent Conocarpus. J Irrig Water Eng 2019; 9(3): 182-94. (Persian)
52. Kim NJ, Hirai M, Shoda M. Comparison Of Organic And Inorganic Packing Materials In The Removal Of Ammonia Gas In Biofilters. J Hazard Mater 2000; 72(1): 77-90. [DOI:10.1016/S0304-3894(99)00160-0]
53. Atabati H, Azadfar D, Majdabadi A. The Comparison Of The Abilities Of Leucocephala Leucenana, Conocarpus Erectus, And Lawsonia Inermis In Phytoremediation And Absorption Of Cs And Sr. J Environ Sci Tech. In Press.
54. Bradbear N. Bees And Their Role In Forest Livelihoods: A Guide To The Services Provided By Bees And The Sustainable Harvesting, Processing And Marketing Of Their Products. Non-Wood Forest Products. 2009(19): 66-67.
55. Abou-Shaara HF. Pollen Sources For Honey Bee Colonies At Land With Desert Nature During Dearth Period. Cercetari Agronomice In Moldova 2016; 48(3): 73-80. [DOI:10.1515/cerce-2015-0043]
56. Bammer MC, Kern WH, Ellis JD. [IN1223] Florida Honey Bee Plants. EDIS 2018; 2018(6): 1-12. [DOI:10.32473/edis-in1223-2018]
57. Islam MR, Pervin T, Hossain H, et al. Physicochemical And Antioxidant Properties Of Honeys From The Sundarbans Mangrove Forest Of Bangladesh. Prev Nutr Food Sci 2017; 22(4): 335-44. [DOI:10.3746/pnf.2017.22.4.335] [PMID] [PMCID]
58. Rajabpour A, Abdali Mashahdi AR, Ghorbani MR. Chemical Compositions Of Leaf Extracts From Conocarpus Erectus L. (Combretaceae) And Their Bioactivities Against Tribolium Castaneum Herbst (Coleoptera: Tenebrionidae). J Asia Pac Entomol 2019; 22(1): 333-7. [DOI:10.1016/j.aspen.2019.01.015]
59. Etemadi-Aleagha A, Akhgari M, Iravani FS. Aluminum Phosphide Poisoning-Related Deaths In Tehran, Iran, 2006 To 2013. Medicine 2015; 94(38): e1637. [DOI:10.1097/MD.0000000000001637] [PMID] [PMCID]
60. Baba S, Chan HT, Aksornkoae S. Useful Products from Mangrove and other CoastalPlants. ISME Mangrove Educational Book Series No. 3. International Society for MangroveEcosystems (ISME), Okinawa, Japan, and International Tropical Timber Organization (ITTO),Yokohama, Japan, 2013.
61. Wells DL. The State Of Research On Human-Animal Relations: Implications For Human Health. Anthrozoös 2019; 32(2): 169-81. [DOI:10.1080/08927936.2019.1569902]
62. Madani K. Water Management In Iran: What Is Causing The Looming Crisis? J Environ Stud Sci 2014; 4: 315-28. [DOI:10.1007/s13412-014-0182-z]
63. Doell P, Mueller Schmied H, Schuh C, et al. Global‐Scale Assessment Of Groundwater Depletion And Related Groundwater Abstractions: Combining Hydrological Modeling With Information From Well Observations And GRACE Satellites. Water Resour Res 2014; 50(7): 5698-720. [DOI:10.1002/2014WR015595]
64. Alizadeh-Choobari O, Najafi MS. Extreme Weather Events In Iran Under A Changing Climate. Clim Dynam 2018; 50: 249-60. [DOI:10.1007/s00382-017-3602-4]
65. Mader S. Plant Trees For The Planet: The Potential Of Forests For Climate Change Mitigation And The Major Drivers Of National Forest Area. Mitig Adapt Strateg Glob Change 2020; 25: 519-36. https://doi.org/10.1007/s11027-020-09914-5 [DOI:10.1007/s11027-019-09875-4]
66. Kriebel R, Khabbazian M, Sytsma KJ. A Continuous Morphological Approach To Study The Evolution Of Pollen In A Phylogenetic Context: An Example With The Order Myrtales. PLoS One 2017; 12(12): e0187228. [DOI:10.1371/journal.pone.0187228] [PMID] [PMCID]
67. Ricklefs RE, Schwarzbach AE, Renner SS. Rate Of Lineage Origin Explains The Diversity Anomaly In The World's Mangrove Vegetation. Am Nat 2006; 168(6): 805-10. [DOI:10.1086/508711] [PMID]
68. Lopez D, Cherigo L, De Sedas A, et al. Evaluation Of Antiparasitic, Anticancer, Antimicrobial And Hypoglycemic Properties Of Organic Extracts From Panamanian Mangrove Plants. Asian Pac J Trop Med 2018; 11(1): 32-9. [DOI:10.4103/1995-7645.223531]
69. Khalil R, Ali Q, Hafeez MM, et al. Phenolic Acid Profiling By RP-HPLC: Evaluation Of Antibacterial And Anticancer Activities Of Conocarpus Erectus Plant Extracts. Biol Clin Sci Res J 2020; 10. [DOI:10.54112/bcsrj.v2020i1.10]
70. Faraj AK, Shawkat MS. Cytotoxic Effect Of Flavonoids Extracted From Conocarpus Erectus Leaves On Hela Cell And Ref. Plant Archiv 2020; 20(1): 3476-80.
71. Hamed MM, Safwat GM, Helmy AT. The Biological Activity Of Conocarpus Erectus Extracts And Their Applications As Cytotoxic Agents. J Forensic Toxicol Pharmacol 2018; 7: 27.
72. Ismaiel GH. Antioxidant, Antimicrobial And Anticancer Activities Of Egyptian Conocarpus Erectus L. Leaves Extracts. Egypt J Food Sci 2018; 46(1): 165-74. [DOI:10.21608/ejfs.2018.85913]
73. Saadullah M, Asif M, Sattar A, et al. Cytotoxic And Antioxidant Potentials Of Ellagic Acid Derivatives From Conocarpus Lancifolius (Combretaceae). Trop J Pharma Res 2020; 19(5): 1073-80. [DOI:10.4314/tjpr.v19i5.24]
74. Al-Taweel AM, Perveen S, Fawzy GA, et al. New Ellagic Acid Derivative From The Fruits Of Heat-Tolerant Plant Conocarpus Lancifolius Engl, And Their Anti-Inflammatory, Cytotoxic, PPAR Agonistic Activities. Pak J Pharm Sci 2016; 29(5 Suppl): 1833-7.
75. Ayoub NA. A Trimethoxyellagic Acid Glucuronide From Conocarpus Erectus Leaves: Isolation, Characterization And Assay Of Antioxidant Capacity. Pharm Biol 2010; 48(3): 328-32. [DOI:10.3109/13880200903131567] [PMID]
76. Do Nascimento Santos DKD, Da Silva Barros BR, De Souza Aguiar LM, et al. Immunostimulatory And Antioxidant Activities Of A Lignin Isolated From Conocarpus Erectus Leaves. Int J Biol Macromol 2020; 150: 169-77. [DOI:10.1016/j.ijbiomac.2020.02.052] [PMID]
77. Hussein RA. Evaluation Antioxidant And Antibacterial Activities Of N-Butanol Fraction Of Conocarpus Erectus L. Leaves Extract. Int J Pharma Med Res 2016; 4(6): 394-400.
78. Abdel-Hameed ES, Bazaid SA, Sabra AN. Protective Effect Of Conocarpus Erectus Extracts On Ccl4-Induced Chronic Liver Injury In Mice. Glob J Pharmacol 2013; 7(1): 52-60.
79. Saadullah M, Chaudary BA, Uzair M. Antioxidant, Phytotoxic And Antiurease Activities, And Total Phenolic And Flavonoid Contents Of Conocarpus Lancifolius (Combretaceae). Trop J Pharm Res 2016; 15(3): 555-61. [DOI:10.4314/tjpr.v15i3.17]
80. Al-Abaas DA. Effects Alkaliods Extrects Of Citrullus Colocynthus Fruits And Seeds And Conocarpus Erectus Leaves On Radial Growth Of Vicia Faba Seeds And Roots Compaing Fungi. Al-Qadisiyah J Pure Sci 2017; 22(1): 27-40.
81. Hajar AS, Gumgumjee NM. Antibacterial Efficiency And Dna Impairmentunveilin Some Bacteria Strains Treated With Conocarpus Erectus L. Extract. Int J Appl Biol Pharma Tech 2013; 4(4): 37-47.
82. Santos DK, De Almeida VS, De Araujo DRC, et al. Evaluation Of Cytotoxic, Immunomodulatory And Antibacterial Activities Of Aqueous Extract From Leaves Of Conocarpus Erectus Linnaeus (Combretaceae). J Pharm Pharmacol 2018; 70(8): 1092-101. [DOI:10.1111/jphp.12930] [PMID]
83. Yasin SA, Al-Azawi AH. Antibacterial Activity Of Conocarpus Erectus Leaves Extracts On Some Microorganisms Isolated From Patients With Burn Infection. Plant Archiv 2019; 19(2): 583-9.
84. Shohayeb M, Abdel-Hameed E, Bazaid S. Antimicrobial Activity Of Tannins And Extracts Of Different Parts Of Conocarpus Erectus L. Int J Pharm Bio Sci 2013; 3(2): 544-53.
85. Abdel Menaem Ramadan M, Nassar SH, Abd El Aty AA, et al. Antimicrobial Fabrics Using Conocarpus Erectus Aqueous Extract. Egypt J Chem 2017; 60(6): 1111-21. [DOI:10.21608/ejchem.2017.1529.1112]
86. Kyeremeh K, Owusu KB, Ofosuhene M, et al. Anti-Proliferative And Anti-Plasmodia Activity Of Quinolactacin A2, Citrinadin A And Butrecitrinadin Co-Isolated From A Ghanaian Mangrove Endophytic Fungus Cladosporium Oxysporum Strain BRS2A-AR2F. J Chem Appl 2017; 3(1): 12. [DOI:10.13188/2380-5021.1000007]
87. Raheema RH, Shoker RM. Phytochemicals Screening And Antibacterial Activity Of Silver Nanoparticles, Phenols And Alkaloids Extracts Of Conocarpus Lancifolius. Eurasian J Biosci 2020; 14(2): 4829-35.
88. Mohammed SA, Mousa HM, Alwan AH. Determination Of Hemolytic Cytotoxicity And Antibacterial Activity Of Conocarpus Lancifolius Aqueous Leaves Extract. IOP Conf Ser Mater Sci Eng 2019; 571: 012045. [DOI:10.1088/1757-899X/571/1/012045]

XML   Persian Abstract   Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 24, Issue 2 (Iranian South Medical Journal 2021) Back to browse issues page