Volume 24, Issue 4 (Iranian South Medical Journal 2021)                   Iran South Med J 2021, 24(4): 265-299 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebbi H, Maryamabadi A. Toxinology of Cephalopods: A Review Article. Iran South Med J 2021; 24 (4) :265-299
URL: http://ismj.bpums.ac.ir/article-1-1501-en.html
1- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
2- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , ammar@pgu.ac.ir
Abstract:   (1370 Views)
Most cephalopods are venomous organisms whose major venom constituents include protein toxins, small toxic molecules, enzymes, and amines. Neurotoxic cephalotoxins are protein toxins that were first isolated from this family. They are categorized into SE-cephalotoxins, α-cephalotoxins, and β-cephalotoxins. The SE-cephalotoxin compound is roughly a thousand-fold more toxic than other members of the group. Among the small toxic molecules, tetrodotoxins and tachykinins can be mentioned. Salivary tachykinins of
cephalopods can cause severe hypotension and contraction of gastrointestinal muscles in vertebrates. The peptide derivatives of tachykinins in the cephalopod brains have more toxic effects than the simple
tachykinins. Chitinases, phospholipases and acetylcholinesterase are the most important integral
components of the cephalopod venom. Phospholipase A2 plays an important role in fat metabolism, in the progression of some diseases, as well as the neurotoxic and myotoxic effects of the venom. Acetylcholinesterase inhibits the stimulation of muscarinic receptors. In addition to epinephrine, norepinephrine, dopamine, serotonin, and histamine, one of the most abundant amines found in octopus saliva is "octapamine". The inks of many species of cephalopods contain significant amounts of melanin, which, in addition to biotechnological applications, have antifungal, antibacterial and anti-cancer effects. Insoluble globules of the complex skin system of cephalopods contain proteins called "reflectin", which are responsible for producing a wide range of colors. Reflectins are exclusively found in cephalopods. In fact, the existing toxinological and biotechnological studies of the venom of this marine life are not commensurate with their diversity as well as their unique composition, and more efforts are needed to succeed in this field.
Full-Text [PDF 1721 kb]   (377 Downloads)    
Type of Study: Review | Subject: Pharmacology
Received: 2021/05/31 | Accepted: 2021/11/4 | Published: 2021/10/30

1. Hanlon R, Vecchione M, Allcock L. Octopus, Squid, And Cuttlefish: A Visual, Scientific Guide To The Oceans’ Most Advanced Invertebrates. Chicago: University Of Chicago Press, 2018.
2. Smith MR, Caron JB. Primitive Soft-Bodied Cephalopods From The Cambrian. Nature 2010; 465(7297): 469-72.
3. Young RE, Vecchione M, Donovan DT. The Evolution Of Coleoid Cephalopods And Their Present Biodiversity And Ecology. S Afr J Mar Sci 1998; 20(1): 393-420.
4. Gestal C, Pascual S, Guerra Á, et al. Handbook Of Pathogens And Diseases In Cephalopods. Springer, 2019.
5. Saunders WB, Landman N. Nautilus: The Biology And Paleobiology Of A Living Fossil. Springer Science & Business Media, 2009.
6. Venkatesan V, Mohamed KS. Cephalopod Classification And Taxonomy. Central Marine Fisheries Research Institute, Kochi, 2015.
7. Iglesias J, Fuentes L, Villanueva R, Editors. Cephalopod Culture. Springer Science & Business Media, 2014.
8. Sasaki TA, Shigeno S, Tanabe KA, Shigeta Y, Hirano H. Anatomy Of Living Nautilus: Reevaluation Of Primitiveness And Comparison With Coleoidea. Cephalopods-Present And Past. Tokai University Press, Tokyo, 2010.
9. Von Byern J, Wani R, Schwaha T, et al. Old And Sticky—Adhesive Mechanisms In The Living Fossil Nautilus Pompilius (Mollusca, Cephalopoda). Zoology 2012; 115(1): 1-11.
10. Saunders WB, Wehman DA. Shell Strength Of Nautilus As A Depth Limiting Factor. Paleobiology 1977; 3(1): 83-9.
11. Klug C, Landman NH, Fuchs D, et al. Anatomy And Evolution Of The First Coleoidea In The Carboniferous. Commun Biol 2019; 2(1): 1-2.
12. Doguzhaeva LA, Mapes RH, Mutvei H. The Shell And Ink Sac Morphology And Ultrastructure Of The Late Pennsylvanian Cephalopod Donovaniconus And Its Phylogenetic Significance. Berliner Paläobiologische Abhandlungen 2003; 3: 61-78.
13. Norman M, Reid A. Guide To Squid, Cuttlefish And Octopuses Of Australasia. CSIRO Publishing, 2000.
14. Yang FC, Peters RD, Dies H, Rheinstädter MC. Hierarchical, Self-Similar Structure In Native Squid Pen. Soft Matter 2014; 10(30): 5541-9.
15. Garcia A. Comparative Study Of The Morphology And Anatomy Of Octopuses Of The Family Octopodidae [dissertation]. Auckland University Of Technology, 2010.
16. Lindgren AR, Giribet G, Nishiguchi MK. A Combined Approach To The Phylogeny Of Cephalopoda (Mollusca). Cladistics 2004; 20(5): 454-86.
17. Ali SM, Mohammed TA, Mandour AM, et al. Structure Of The Ink Apparatus And The Funnel Organ Of The Squid" Sepioteuthis Sepioidea"(Cephalopoda: Loliginidae). Egypt J Zool 2017; 67(67): 35-50.
18. Xavier JC, Cherel Y. Cephalopod Beak Guide For The Southern Ocean. British Antarctic Survey, 2009.
19. Xavier JC, Phillips RA, Cherel Y. Cephalopods In Marine Predator Diet Assessments: Why Identifying Upper And Lower Beaks Is Important. ICES J Mar Sci 2011; 68(9): 1857-64.
20. Villanueva R, Perricone V, Fiorito G. Cephalopods As Predators: A Short Journey Among Behavioral Flexibilities, Adaptions, And Feeding Habits. Front Physiol 2017; 8: 598.
21. Reich G. A New Peptide Of The Oxytocin/Vasopressin Family Isolated From Nerves Of The Cephalopod Octopus Vulgaris. Neurosci Lett 1992; 134(2): 191-4.
22. West DJ, Andrews EB, Bowman D, et al. Toxins From Some Poisonous And Venomous Marine Snails. Comp Biochem Phys C 1996; 113(1): 1-10.
23. Ghiretti F. Cephalotoxin: The Crab-Paralysing Agent Of The Posterior Salivary Glands Of Cephalopods. Nature 1959; 183(4669): 1192-3.
24. Songdahl JH, Shapiro BI. Purification And Composition Of A Toxin From The Posterior Salivary Gland Of Octopus Dofleini. Toxicon 1974; 12(2): 109-12.
25. Key LN, Boyle PR, Jaspars M. Novel Activities Of Saliva From The Octopus Eledone Cirrhosa (Mollusca; Cephalopoda). Toxicon 2002; 40(6): 677-83.
26. Ghiretti F, Libonati M. Research On Cephalotoxin. 1. Extraction And Purification Of The Substanceboll Soc Ital Biol Sper 1959; 35: 2000-3.
27. Mcdonald NM, Cottrell GA. Purification And Mode Of Action Of Toxin From EledoneCirrhosa. Toxicon 1970; 8(2): 142.
28. Ueda A, Nagai H, Ishida M, et al. Purification And Molecular Cloning Of SE-Cephalotoxin, A Novel Proteinaceous Toxin From The Posterior Salivary Gland Of Cuttlefish Sepia Esculenta. Toxicon 2008; 52(4): 574-81.
29. Wang J, Shen B, Guo M, et al. Blocking Effect And Crystal Structure Of Natrin Toxin, A Cysteine-Rich Secretory Protein From Naja Atra Venom That Targets The Bkca Channel. Biochemistry 2005; 44(30): 10145-52.
30. Cariello L, Zanetti L. Alpha-And BetaCephalotoxin: Two Paralysing Proteins From Posterior Salivary Glands Of Octopus Vulgaris. Comp Biochem Physiol C Comp Pharmacol 1977; 57(2): 169-73.
31. Asakawa M, Matsumoto T, Umezaki K, et al. Toxicity and Toxin Composition of the Greater Blue-Ringed Octopus Hapalochlaena lunulata from Ishigaki Island, Okinawa Prefecture, Japan. Toxins 2019; 11(5): 245.
32. Wells MJ. Octopus: Physiology And Behaviour Of An Advanced Invertebrate. Springer Science & Business Media, 2013.
33. Kawashima Y, Nagashima Y, Shiomi K. Toxicity And Tetramine Contents Of Salivary Glands From Carnivorous Gastropods . Shokuhin Eiseigaku Zasshi 2002; 43(6): 385-388.
34. Ruder T, Sunagar K, Undheim EA, et al. Molecular Phylogeny And Evolution Of The Proteins Encoded By Coleoid (Cuttlefish, Octopus, And Squid) Posterior Venom Glands. J Mol Evol 2013; 76(4): 192-204.
35. Freeman SE, Turner RJ. Maculotoxin, A Potent Toxin Secreted By Octopus Maculosus Hoyle. Toxic Appl Pharmacol 1970; 16(3): 681-90.
36. Simon SE, Cairncross KD, Satchell DG, et al. The Toxicity Of Octopus Maculosus Hoyle Venom. Arch Int Pharmacodyn Ther 1964; 149: 318-29.
37. Sutherland SK, Lane WR. Toxins And Mode Of Envenomation Of The Common Ringed Or Blue-Banded Octopus. Med J Aust 1969; 1(18): 893-8.
38. Croft JA, Howden ME. Chemistry Of Maculotoxin: A Potent Neurotoxin Isolated From Hapalochlaena Maculosa. Toxicon 1972; 10(6): 645-51.
39. Jarvis MW, Crone HD, Freeman SE, et al. Chromatographic Properties Of Maculotoxin, A Toxin Secreted By Octopus (Hapalochlaena) Maculosus. Toxicon 1975; 13(3): 177-81.
40. Sheumack DD, Howden ME, Spence I, et al. Maculotoxin: A Neurotoxin From The Venom Glands Of The Octopus Hapalochlaena Maculosa Identified As Tetrodotoxin. Science 1978; 199(4325): 188-9.
41. Gage PW, Dulhunty A. Effects Of Toxin From The Blue-Ringed Octopus (Hapalochlaena Maculosa. In: Martin DF, Padilla GM, editors. Chapter III. New York: Marine Pharmacognosy, Academic Press, 1973.
42. Dulhunty A, Gage PW. Selective Effects Of An Octopus Toxin On Action Potentials. J Physiol 1971; 218(2): 433-45.
43. Savage IVE, Howden MEH. Hapalotoxin: A Second Lethal Toxin From The Octopus Hapalochlaena Maculosa. Toxicon 1977; 15(5): 463-6.
44. Goto T, Kishi Y, Takahashi S, et al. Tetrodotoxin. Tetrahedron 1965; 21(8): 2059-88.
45. Yasumoto T, Yotsu-Yamashita M. Chemical And Etiological Studies On Tetrodotoxin And Its Analogs. J Toxicol Toxin Rev 1996; 15(2): 81-90.
46. Williams BL, Lovenburg V, Huffard CL, et al. Chemical Defense In Pelagic Octopus Paralarvae: Tetrodotoxin Alone Does Not Protect Individual Paralarvae Of The Greater Blue-Ringed Octopus (Hapalochlaena Lunulata) From Common Reef Predators. Chemoecology 2011; 21(3): 131-41.
47. Lago J, Rodríguez LP, Blanco L, et al. Tetrodotoxin, An Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin And Therapeutical Uses. Mar Drugs 2015; 13(10): 6384-406.
48. Yotsu-Yamashita M, Mebs D, Flachsenberger W. Distribution Of Tetrodotoxin In The Body Of The Blue-Ringed Octopus (Hapalochlaena Maculosa). Toxicon 2007; 49(3): 410-2.
49. Jacups SP, Currie BJ. Blue-Ringed Octopuses: A Brief Review Of Their Toxicology. North Territ Nat 2008; 20: 50-7.
50. Crone HD, Leake B, Jarvis MW, et al. On The Nature Of “Maculotoxin”, A Toxin From The Blue-Ringed Octopus (Hapalochlaena Maculosa). Toxicon 1976; 14(6): 423-6.
51. Suehiro M. Historical Review On Chemical And Medical Studies Of Globefish Toxin Before World War II. Yakushigaku Zasshi 1994; 29(3): 428-34.
52. Woodward RB. The Structure Of Tetrodotoxin. Pure Appl Chem 1964; 9(1): 49-74.
53. Denac H, Mevissen M, Scholtysik G. Structure, Function And Pharmacology Of Voltage-Gated Sodium Channels. Naunyn Schmiedebergs Arch Pharmacol 2000; 362(6): 453-79.
54. Karimi G, Lari P. Tetrodotoxin. Encyclopedia Of Toxicology. 3 rd ed. Academic Press, 2014, 515-8.
55. Yotsu-Yamashita M, Sugimoto A, Takai A, et al. Effects Of Specific Modifications Of Several Hydroxyls Of Tetrodotoxin On Its Affinity To Rat Brain Membrane. J Pharmacol Exp Ther 1999; 289(3): 1688-96.
56. Bane V, Lehane M, Dikshit M, et al. Tetrodotoxin: Chemistry, Toxicity, Source, Distribution And Detection. Toxins 2014; 6(2): 693-755.
57. Hanifin CT, Yotsu-Yamashita M, Yasumoto T, et al. Toxicity Of Dangerous Prey: Variation Of Tetrodotoxin Levels Within And Among Populations Of The Newt Taricha Granulosa. J Chem Ecol 1999; 25(9): 2161-75.
58. Yang L, Kao CY. Actions Of Chiriquitoxin On Frog Skeletal Muscle Fibers And Implications For The Tetrodotoxin/Saxitoxin Receptor. J Gen Physiol 1992; 100(4): 609-22.
59. Nässel DR, Zandawala M, Kawada T, et al. Tachykinins: Neuropeptides That Are Ancient, Diverse, Widespread And Functionally Pleiotropic. Front Neurosci 2019; 13: 1262.
60. Kanda A, Iwakoshi-Ukena E, Takuwa-Kuroda K, et al. Isolation And Characterization Of Novel Tachykinins From The Posterior Salivary Gland Of The Common Octopus Octopus Vulgaris. Peptides 2003; 24(1): 35-43.
61. Anastasi A, Erspamer V. The Isolation And Amino Acid Sequence Of Eledoisin, The Active Endecapeptide Of The Posterior Salivary Glands Of Eledone. Arch Biochem Biophys 1963; 101(1): 56-65.
62. Erspamer V, Anastasi A. Structure And Pharmacological Actions Of Eledoisin, The Active Endecapeptide Of The Posterior Salivary Glands Of Eledone. Experientia 1962; 18(2): 58-9.
63. Anastasi A, Erspamer V. Occurrence And Some Properties Of Eledoisin In Extracts Of Posterior Salivary Glands Of Eledone. Br J Pharmacol Chemother 1962; 19(2): 326-36.
64. Kanda A, Takuwa-Kuroda K, Aoyama M, et al. A Novel Tachykinin-Related Peptide Receptor Of Octopus Vulgaris- Evolutionary Aspects Of Invertebrate Tachykinin And Tachykinin-Related Peptide. FEBS J 2007; 274(9): 2229-39.
65. Kini RM. Excitement Ahead: Structure, Function And Mechanism Of Snake Venom Phospholipase A2 Enzymes. Toxicon 2003; 42(8): 827-40.
66. Wong ES, Belov K. Venom Evolution Through Gene Duplications. Gene 2012; 496(1): 1-7.
67. Hou F, Ma X, Fan L, et al. Enhancement Of Chitin Suspension Hydrolysis By A Combination Of Ultrasound And Chitinase. Carbohydr Polym 2020; 231: 115669.
68. Li S, Zhang B, Zhu H, et al. Cloning And Expression Of The Chitinase Encoded By Chikj406136 From Streptomyces Sampsonii (Millard & Burr) Waksman KJ40 And Its Antifungal Effect. Forests 2018; 9(11): 699.
69. Annamalai N, Rajeswari MV, Vijayalakshmi S, et al. Purification And Characterization Of Chitinase From Alcaligenes Faecalis AU02 By Utilizing Marine Wastes And Its Antioxidant Activity. Ann Microbiol 2011; 61(4): 801-7.
70. Sahai AS, Manocha MS. Chitinases Of Fungi And Plants: Their Involvement In Morphogenesis And Host-Parasite Interaction. FEMS Microbiol Rev 1993; 11(4): 317-38.
71. Rathore AS, Gupta RD. Chitinases From Bacteria To Human: Properties, Applications, And Future Perspectives. Enzyme Res 2015; 2015: 791907.
72. Mohebbi GH, Vatanpour H, Vazirizadeh A, et al. Phospholipase A2 Activity Of The Persian Gulf Upside-Down Jellyfish Venom (Cassiopea Andromeda). Iran South Med J 2017; 20(3): 287-300. (Persian)
73. Six DA, Dennis EA. The Expanding Superfamily Of Phospholipase A2 Enzymes: Classification And Characterization. Biochim Biophys Acta Mol Cell Biol Lipids 2000; 1488(1-2): 1-19.
74. Scott DL, White SP, Otwinowski Z, et al. Interfacial Catalysis: The Mechanism Of Phospholipase A2. Science 1990; 250(4987): 1541-6.
75. Fingerhut LC, Strugnell JM, Faou P, et al. Shotgun Proteomics Analysis Of Saliva And Salivary Gland Tissue From The Common Octopus Octopus Vulgaris. J Proteome Res 2018; 17(11): 3866-76.
76. Kramer RM, Roberts EF, Manetta J, et al. The Ca2 (+)-Sensitive Cytosolic Phospholipase A2 Is A 100-kDa Protein In Human Monoblast U937 Cells. J Biol Chem 1991; 266(8): 5268-72.
77. Ghosh M, Tucker DE, Burchett SA, et al. Properties Of The Group IV Phospholipase A2 Family. Prog Lipid Res 2006; 45(6): 487-510.
78. Ackermann EJ, Kempner ES, Dennis EA. Ca (2+)-Independent Cytosolic Phospholipase A2 From Macrophage-Like P388D1 Cells. Isolation And Characterization. J Biol Chem 1994; 269(12): 9227-33.
79. Schaloske RH, Dennis EA. The Phospholipase A2 Superfamily And Its Group Numbering System. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761(11): 1246-59.
80. Gelb MH, Min JH, Jain MK. Do Membrane-Bound Enzymes Access Their Substrates From The Membrane Or Aqueous Phase: Interfacial Versus Non-Interfacial Enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2000; 1488(1-2): 20-7.
81. Karasawa K, Inoue K. Overview Of PAFDegrading Enzymes. Enzymes 2015; 38: 1-22.
82. Tjoelker LW, Wilder C, Eberhardt C, et al. Anti-Inflammatory Properties Of A Platelet-Activating Factor Acetylhydrolase. Nature 1995; 374(6522): 549-53.
83. Mohler ER, Ballantyne CM, Davidson MH, et al. The Effect Of Darapladib On Plasma Lipoprotein-Associated Phospholipase A2 Activity And Cardiovascular Biomarkers In Patients With Stable Coronary Heart Disease Or Coronary Heart Disease Risk Equivalent: The Results Of A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study. J Am Coll Cardiol 2008; 51(17): 1632-41.
84. Quinn DM. Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, And Virtual Transition States. Chem Rev 1987; 87(5): 955-79.
85. Harel M, Quinn DM, Nair HK, et al. The X-Ray Structure Of A Transition State Analog Complex Reveals The Molecular Origins Of The Catalytic Power And Substrate Specificity Of Acetylcholinesterase. J Am Chem Soc 1996; 118(10): 2340-6.
86. Bourne Y, Taylor P, Marchot P. Acetylcholinesterase Inhibition By Fasciculin: Crystal Structure Of The Complex. Cell 1995; 83(3): 503-12.
87. Welsh JH. Composition And Mode Of Action Of Some Invertebrate Venoms. Annu Rev Pharmacol 1964; 4(1): 293-304.
88. Erspamer V, Boretti G. Identification And Characterization, By Paper Chromatography, Of Enteramine, Octopamine, Tyramine, Histamine And Allied Substances In Extracts Of Posterior Salivary Glands Of Octopoda And In Other Tissue Extracts Of Vertebrates And Invertebrates. Arch Int Pharmacodyn Ther 1951; 88(3): 296-332.
89. Axelrod J, Saavedra JM. Octopamine. Nature 1977; 265(5594): 501-4.
90. David JC, Coulon JF. Octopamine In Invertebrates And Vertebrates. A Review. Prog Neurobiol 1985; 24(2): 141-85.
91. Roeder T. Octopamine In Invertebrates. Prog Neurobiol 1999; 59(5): 533-61.
92. Vialli M, Erspamer V. Ricerche Sul Secreto Delle Cellule Enterocromaffini. Z Zellforsch Mik Ana 1937; 27(1): 81-99.
93. Mohammad‐Zadeh LF, Moses L, Gwaltney‐Brant SM. Serotonin: A Review. J Vet Pharmacol Ther 2008; 31(3): 187-99.
94. Jacobs BL, Azmitia EC. Structure And Function Of The Brain Serotonin System. Physiol Rev 1992; 72(1): 165-229.
95. Mcphee MJ, Wilkens JL. Serotonin, But Not Dopamine Or Octopamine, Modifies Locomotor And Phototaxic Behavior Of The Crab, Carcinus Maenas. Can J Zool 1989; 67(2): 391-3.
96. Welsh JH, Moorhead M. The Quantitative Distribution Of 5‐Hydroxy‐Tryptamine In The Invertebrates, Especially In Their Nervous Systems. J Neurochem 1960; 6(2): 146-69.
97. Boyle P, Rodhouse P. Cephalopods: Ecology And Fisheries. John Wiley & Sons, 2008.
98. Solano F. Melanins: Skin Pigments And Much More Types, Structural Models, Biological Functions, And Formation Routes. New J Sci 2014; 2014: 498276.
99. Palumbo A. Melanogenesis In The Ink Gland Of Sepia Officinalis. Pigment Cell Res 2003; 16(5): 517-22.
100. Prota G. Melanins, Melanogenesis And Melanocytes: Looking At Their Functional Significance From The Chemist's Viewpoint. Pigment Cell Res 2000; 13(4): 283-93.
101. Orlow SJ, Osber MP, Pawelek JM. Synthesis And Characterization Of Melanins From Dihydroxyindole-2-Carboxylic Acid And Dihydroxyindole. Pigment Cell Res 1992; 5(3): 113-21.
102. Derby CD. Cephalopod Ink: Production, Chemistry, Functions And Applications. Mar Drugs 2014; 12(5): 2700-30.
103. Castellano I, Seebeck FP. On Ovothiol Biosynthesis And Biological Roles: From Life In The Ocean To Therapeutic Potential. Nat Prod Rep 2018; 35(12): 1241-50.
104. Kornprobst JM. Encyclopedia Of Marine Natural Products. John Wiley & Sons, 2014.
105. Petkovic MV. Determination Of The Antimicrobial Activity Of Purified Melanin From The Ink Of Octopus Mimus Gould, 1852 (Cephalopoda: Octopodidae). Lat Am J Aquat Res 2013; 41(3): 584-7.
106. Mohanraju R, Marri DB, Karthick P, et al. Antibacterial Activity Of Certain Cephalopods From Andamans, India. Int J Pharm Biol Sci 2013; 3(2): 450-5.
107. Vennila R, Rajesh Kumar RK, Kanchana S, et al. Investigation Of Antimicrobial And Plasma Coagulation Property Of Some Molluscan Ink Extracts: Gastropods And Cephalopods. Afr J Biochem Res 2010; 5(1): 14-21.
108. Fahmy SR, Soliman AM. In Vitro Antioxidant, Analgesic And Cytotoxic Activities Of Sepia Officinalis Ink And Coelatura Aegyptiaca Extracts. Afr J Pharm Pharmacol 2013; 7(22): 1512-22.
109. Hossain MP, Rabeta MS, Husnul Azan T. Medicinal And Therapeutic Properties Of Cephalopod Ink: A Short Review. Food Res 2019; 3(3): 188-98.
110. Prota G, Ortonne JP, Voulot C, et al. Occurrence And Properties Of Tyrosinase In The Ejected Ink Of Cephalopods. Comp Biochem Physiol B 1981; 68(3): 415-9.
111. Chen S, Xu J, Xue C, et al. Sequence Determination Of A Non-Sulfated Glycosaminoglycan-Like Polysaccharide From Melanin-Free Ink Of The Squid Ommastrephes Bartrami By Negative-Ion Electrospray Tandem Mass Spectrometry And NMR Spectroscopy. Glycoconj J 2008; 25(5): 481-92.
112. Kamio M, Grimes TV, Hutchins MH, et al. The Purple Pigment Aplysioviolin In Sea Hare Ink Deters Predatory Blue Crabs Through Their Chemical Senses. Anim Behav 2010; 80(1): 89-100.
113. Huang F, Yang Z, Yu D, et al. Sepia Ink Oligopeptide Induces Apoptosis In Prostate Cancer Cell Lines Via Caspase-3 Activation And Elevation Of Bax/Bcl-2 Ratio. Mar Drugs 2012; 10(10): 2153-65.
114. Zhong JP, Wang G, Shang JH, et al. Protective Effects Of Squid Ink Extract Towards Hemopoietic Injuries Induced By Cyclophosphamine. Mar Drugs 2009; 7(1): 9-18.
115. Mäthger LM, Denton EJ, Marshall NJ, et al. Mechanisms And Behavioural Functions Of Structural Coloration In Cephalopods. J R Soc Interface 2009; 6(Suppl 2): S149-S163.
116. Cai T, Han K, Yang P, et al. Reconstruction Of Dynamic And Reversible Color Change Using Reflectin Protein. Sci Rep 2019; 9(1): 1-11.
117. Doucet SM, Meadows MG. Iridescence: A Functional Perspective. J R Soc Interface 2009; 6(Suppl 2): S115-S132.
118. Crookes WJ, Ding LL, Huang QL, et al. Reflectins: The Unusual Proteins Of Squid Reflective Tissues. Science 2004; 303(5655): 235-8.
119. Guan Z, Cai T, Liu Z, et al. Origin Of The Reflectin Gene And Hierarchical Assembly Of Its Protein. Curr Biol 2017; 27(18): 2833-42.

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | ISMJ

Designed & Developed by: Yektaweb