دوره 25، شماره 4 - ( دو ماهنامه طب جنوب 1401 )                   جلد 25 شماره 4 صفحات 407-394 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- مرکز تحقیقات پزشکی هسته‌ای، دانشگاه علوم پزشکی تهران، تهران، ایران
2- مرکز تحقیقات پزشکی هسته‌ای، دانشگاه علوم پزشکی تهران، تهران، ایران ، n.karamzade@gmail.com
چکیده:   (1215 مشاهده)
زمینه: سرطان تیروئید شایع‌ترین بدخیمی غدد درون‌ریز در جهان است، با این حال این بیماران در صورت دریافت درمان مناسب و به موقع، معمولاً میزان بقای بالایی را تجربه می‌کنند. در این میان بیمارانی که تحت عنوان سرطان تیروئید تمایز یافته با تیروگلوبولین بالا و اسکن ید منفی ](TENIS)[Differentiated thyroid cancer with thyroglobulin elevation and negative iodine scintigraphy دسته‌بندی می‌شوند، همواره یک چالش تشخیصی- درمانی محسوب می‌شوند.
مواد و روش‌ها: جستجوی جامع مقالات منتشر شده در پایگاه داده PubMed/MEDLINE در مورد تصویربرداری هسته‌ای در سرطان متمایز تیروئید با افزایش تیروگلوبولین و سینتی گرافی منفی ید انجام شد و تمام مطالعات انسانی انجام گرفته در این زمینه بررسی شدند.   
یافته‌ها: در این مطالعه مروری، به بررسی چهار گروه عمده در زمینه تصویربرداری با هدف شناسایی گیرنده‌های GLUT، SSTR، PSMA و FAP در بیماران TENIS، پرداخته شده است. نرخ تشخیصی 2-[18F]FDG PET/CT در این بیماران بر اساس مطالعات مختلف 81-63 درصد گزارش شده است. همچنین اسکن‌های [68Ga]Ga-DOTATATE PET/CT،[68Ga]Ga-PSMA PET/CT و
[68Ga]Ga-FAPI PET/CT نتایج خوبی در این بیماران نشان داده‌اند.
نتیجه‌گیری: تصویربرداری به روش [68Ga]Ga-FAPI PET/CT بالاترین نرخ تشخیصی را در بین این بیماران دارد که با توجه به قابلیت ترانوستیک FAPI و همچنین با در نظر گرفتن عوارض فراوان و معیارهای ورودی محدود درمان با مهارکننده‌های تیروزین کیناز که تا به امروز قدم بعدی در درمان بیماران TENIS بوده است، ارزش انجام مطالعات گسترده‌تر در این زمینه را دارا می‌باشد.
متن کامل [PDF 564 kb]   (462 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: رادیولوژی، عکسبرداری تشخیصی
دریافت: 1401/7/24 | پذیرش: 1401/9/15 | انتشار: 1401/9/26

فهرست منابع
1. Agate L, Lorusso L, Elisei R. New and old knowledge on differentiated thyroid cancer epidemiology and risk factors. J Endocrinol Invest 2012; 35(6 Suppl): 3-9. [PubMed]
2. Ardeshir Larijani Mb, Mohagheghi Sma, Mousavi Jarahi Sar, et al. Thyroid Cancer In Iran: An Epidemiological Survey Based On Cancer Data's Registered In Tehran. J Med Council Iran 2005; 23(4): 362-367. [Article]
3. Salari N, Kazeminia M, Mohammadi M. The Prevalence of Thyroid Cancer in Iran: a Systematic Review and Meta-analysis. Indian J Surg Oncol 2021; 2021(6): 1-11. [DOI]
4. Caetano R, Bastos CR, de Oliveira IA, et al. Accuracy of positron emission tomography and positron emission tomography-CT in the detection of differentiated thyroid cancer recurrence with negative 131I whole-body scan results: A meta-analysis. Head Neck 2016; 38(2): 316-27. [DOI]
5. Kist JW, de Keizer B, Stokkel MP, et al. Recurrent differentiated thyroid cancer: towards personalized treatment based on evaluation of tumor characteristics with PET (THYROPET Study): study protocol of a multicenter observational cohort study. BMC cancer 2014; 14: 405. [DOI]
6. Emami-Ardekani A, Ghorbani-Nik F, Karamzade-Ziarati N, et al. Impact of TSH stimulation on 2-[18F]FDG PET/CT results in patients with papillary thyroid carcinoma presented with elevated serum thyroglobulin level and negative diagnostic iodine-131 whole-body scan. Iran J Nucl Med 2022; 30(2): 88-95. [Article]
7. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016; 26(1): 1-133. [DOI]
8. Laha D, Nilubol N, Boufraqech M. New Therapies for Advanced Thyroid Cancer. Front Endocrinol 2020; 11: 1-9. [DOI]
9. Chao M. Management of Differentiated Thyroid Cancer with Rising Thyroglobulin and Negative Diagnostic Radioiodine Whole Body Scan. Clin Oncol (R Coll Radiol) 2010; 22(6): 438-47. [DOI]
10. Ma C, Kuang A, Xie J, et al. Possible explanations for patients with discordant findings of serum thyroglobulin and 131I whole-body scanning. J Nucl Med 2005; 46(9): 1473-80. [PubMed]
11. Biermann M. Gallium-68-PSMA-PET/CT outperforms radioiodine scintigraphy and FDG–PET/CT in a prospective series of 10 patients with metastasized differentiated thyroid cancer. Clin Thyroid 2018; 30(8): 388-90. [DOI]
12. Shinto AS, Kamaleshwaran KK, Mallia M, et al. Utility of (99m)Tc-Hynic-TOC in 131I Whole-Body Scan Negative Thyroid Cancer Patients with Elevated Serum Thyroglobulin Levels. World J Nucl Med 2015; 14(2): 101-8. [DOI]
13. Vrachimis A, Stegger L, Wenning C, et al. [68Ga]DOTATATE PET/MRI and [18F]FDG PET/CT are complementary and superior to diffusion-weighted MR imaging for radioactive-iodine-refractory differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2016; 43(10): 1765-72. [DOI]
14. Agrawal A, Rangarajan V. Appropriateness criteria of FDG PET/CT in oncology. Indian J Radiol Imaging 2015; 25(02): 88-101. [DOI]
15. Marcus C, Whitworth PW, Surasi DS, et al. PET/CT in the management of thyroid cancers. AJR Am J Roentgenol 2014; 202(6): 1316-29. [DOI]
16. Are C, Hsu JF, Ghossein RA, et al. Histological aggressiveness of fluorodeoxyglucose positron-emission tomogram (FDG-PET)-detected incidental thyroid carcinomas. Ann Surg Oncol 2007; 14(11): 3210-5. [DOI]
17. Shammas A, Degirmenci B, Mountz JM, et al. 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med 2007; 48(2): 221-6. [PubMed]
18. Leboulleux S, Schroeder PR, Schlumberger M, et al. The role of PET in follow-up of patients treated for differentiated epithelial thyroid cancers. Nat Clin Pract Endocrinol Metab 2007; 3(2): 112-21. [DOI]
19. Crippa F, Alessi A, Gerali A, et al. FDG-PET in Thyroid Cancer. Tumori 2003; 89(5): 540-3. [DOI]
20. Kukulska A, Krajewska J, Kołosza Z, et al. The role of FDG-PET in localization of recurrent lesions of differentiated thyroid cancer (DTC) in patients with asymptomatic hyperthyroglobulinemia in a real clinical practice. Eur J Endocrinol 2016; 175(5): 379-85. [DOI]
21. Giovanella L, Trimboli P, Verburg FA, et al. Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2013; 40(6): 874-80. [DOI]
22. Vural GU, Akkas BE, Ercakmak N, et al. Prognostic significance of FDG PET/CT on the follow-up of patients of differentiated thyroid carcinoma with negative 131I whole-body scan and elevated thyroglobulin levels: correlation with clinical and histopathologic characteristics and long-term follow-up data. Clin Nucl Med 2012; 37(10): 953-9. [DOI]
23. Xu C, Zhang H. Somatostatin receptor based imaging and radionuclide therapy. Biomed Res Int 2015; 2015: 917968. [DOI]
24. Atkinson H, England JA, Rafferty A, et al. Somatostatin receptor expression in thyroid disease. Int J Exp Pathol 2013; 94(3): 226-9. [DOI]
25. Treglia G, Rindi G, Rufini V. Expression of somatostatin receptors may guide the use of somatostatin receptor imaging and therapy in differentiated thyroid cancer. Hormones (Athens) 2012; 11(3): 230-2. [DOI]
26. Görges R, Kahaly G, Müller-Brand J, et al. Radionuclide-labeled somatostatin analogues for diagnostic and therapeutic purposes in nonmedullary thyroid cancer. Thyroid 2001; 11(7): 647-59. [DOI]
27. Czepczyński R, Gryczyńska M, Ruchała M. 99mTc-EDDA/HYNIC-TOC in the diagnosis of differentiated thyroid carcinoma refractory to radioiodine treatment. Nucl Med Rev Cent East Eur 2016; 19(2): 67-73. [DOI]
28. Sager S, Kabasakal L, Halac M, et al. Comparison of 99mTc-HYNIC-TOC and HYNIC-TATE octreotide scintigraphy with FDG PET and 99mTc-MIBI in local recurrent or distant metastatic thyroid cancers. Clin Nucl Med 2013; 38(5): 321-5. [DOI]
29. Padhy A, Chung SL, Kok TY, et al. Evaluation of thyroid cancer patients with Ga-68 DOTA-TATE PET/CT: initial experience at a tertiary health care centre. J Nuclear Med 2013; 54(2): 1928. [Article]
30. Demirci E, Kabasakal L, Ocak M, et al. Evaluation of 68Ga-DOTA-TATE and 68 Ga-DOTA-NOC PET/CT in patients with differentiated thyroid cancer. J Nuclear Med 2012; 53(1): 2095. [Article]
31. Jois B, Asopa R, Basu S. Somatostatin Receptor Imaging in Non–131I-Avid Metastatic Differentiated Thyroid Carcinoma for Determining the Feasibility of Peptide Receptor Radionuclide Therapy With 177Lu-DOTATATE: Low Fraction of Patients Suitable for Peptide Receptor Radionuclide Therapy and Evidence of Chromogranin A Level–Positive Neuroendocrine Differentiation. Clin Nucl Med 2014; 39(6): 505-10. [DOI]
32. Bychkov A, Vutrapongwatana U, Tepmongkol S, et al. PSMA expression by microvasculature of thyroid tumors–Potential implications for PSMA theranostics. Sci Rep 2017; 7(1): 5202. [DOI]
33. Derlin T, Kreipe HH, Schumacher U, et al. PSMA expression in tumor neovasculature endothelial cells of follicular thyroid adenoma as identified by molecular imaging using 68Ga-PSMA ligand PET/CT. Clin Nucl Med 2017; 42(3): e173-e4. [DOI]
34. Abbasi M. Hypothesis Generation: Does Lu177 Therapy May be Effective for Treatment of Benign Prostate Hyperthrophy? Iran South Med J 2021; 24(6): 637-8. (persian) [Article]
35. Bertagna F, Albano D, Giovanella L, et al. 68Ga-PSMA PET thyroid incidentalomas. Hormones (Athens) 2019; 18(2): 145-9. [DOI]
36. Sollini M, di Tommaso L, Kirienko M, et al. PSMA expression level predicts differentiated thyroid cancer aggressiveness and patient outcome. EJNMMI Res 2019; 9(1): 93. [DOI]
37. Moore M, Panjwani S, Mathew R, et al. Welldifferentiated thyroid cancer neovasculature expresses prostate-specific membrane antigen—a possible novel therapeutic target. Endocr Pathol 2017; 28(4): 339-44. [DOI]
38. Lütje S, Gomez B, Cohnen J, et al. Imaging of prostate-specific membrane antigen expression in metastatic differentiated thyroid cancer using 68Ga-HBED-CC-PSMA PET/CT. Clin Nucl Med 2017; 42(1): 20-5. [DOI]
39. Verma P, Malhotra G, Meshram V, et al. Prostate-Specific Membrane Antigen Expression in Patients With Differentiated Thyroid Cancer With Thyroglobulin Elevation and Negative Iodine Scintigraphy Using 68Ga-PSMA-HBED-CC PET/CT. Clin Nucl Med 2021; 46(8): e406-e9. [DOI]
40. de Vries LH, Lodewijk L, Braat AJAT, et al. 68Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with 177Lu-PSMA-617. EJNMMI Res 2020; 10: 18. [DOI]
41. Ciappuccini R, Saguet-Rysanek V, Giffard F, et al. PSMA Expression in Differentiated Thyroid Cancer: Association With Radioiodine, 18FDG Uptake, and Patient Outcome. J Clin Endocrinol Metab 2021; 106(12): 3536-45. [DOI]
42. Fu H, Huang J, Sun L, et al. FAP-Targeted Radionuclide Therapy of Advanced Radioiodine-Refractory Differentiated Thyroid Cancer With Multiple Cycles of 177LuFAPI-46. Clin Nucl Med 2022; 47(10): 906-907. [DOI]
43. Fu H, Fu J, Huang J, et al. 68Ga-FAPI PET/CT in Thyroid Cancer With Thyroglobulin Elevation and Negative Iodine Scintigraphy. Clin Nucl Med 2021; 46(5): 427-30. [DOI]
44. Chen Y, Zheng S, Zhang J, et al. 68Ga-DOTA-FAPI-04 PET/CT imaging in radioiodine-refractory differentiated thyroid cancer (RR-DTC) patients. Ann Nucl Med 2022; 36(7): 610-22. [DOI]
45. Fu H, Fu J, Huang J, et al. 68Ga-FAPI PET/CT Versus 18F-FDG PET/CT for Detecting Metastatic Lesions in a Case of Radioiodine-Refractory Differentiated Thyroid Cancer. Clin Nucl Med 2021; 46(11): 940-2. [DOI]
46. Ballal S, Yadav MP, Moon ES, et al. Novel Fibroblast Activation Protein Inhibitor-Based Targeted Theranostics for RadioiodineRefractory Differentiated Thyroid Cancer Patients: A Pilot Study. Thyroid 2022; 32(1): 65-77. [DOI]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.