Volume 19, Issue 5 (Iranian South Medical Journal 2016)                   Iran South Med J 2016, 19(5): 912-930 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zahiri R, Zahiri M. Marine Invertebrate’s Stem Cell Culture: Biotechnology Prospects of Marine Stem Cells. Iran South Med J 2016; 19 (5) :912-930
URL: http://ismj.bpums.ac.ir/article-1-839-en.html
1- Department of Marine Biotechnology, School of Basic Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran , m.zahiri@bpums.ac.ir
Abstract:   (6924 Views)

Since marine invertebrate have many applications in medicine and biological sciences and pharmaceuticals because of valuable metabolites, in recent years related studies to marine invertebrate’s stem cells culture have dramatically increased. Stem cells Stem cells are considered as the progenitor cells of the body. In fact, culturing of these cells is a developed cell culture that maintains ability to proliferate throughout adult life from birth to death and also these stem cells are able to differentiate into different cell types. Unfortunately related researches to stem cells in marine invertebrates didn’t develop in the same manner of mammals and despite many efforts; mana cell lines have been not derived from these organisms yet. This would be due to the paucity of available resources as well as lack of maintaining of culture conditions that this is mainly due to lack of sufficient knowledge about the mechanisms and systems involved in maintaining their stemness. Many evidences have been reported about the presence of marine invertebrates’ stem cells in hydrozoans, crustaceans, echinoderms and real chordate so far. Understanding the suitable culture conditions and understanding the needs and providing appropriate cellular microenvironment will be the prospect of using this valuable resource. This systematic review will be present an overview of the concepts and activities related to marine invertebrates stem cells.

Full-Text [PDF 285 kb]   (5141 Downloads)    
Type of Study: Review | Subject: Disorders of Systemic, Metabolic or Environmental Origin
Received: 2016/07/27 | Accepted: 2016/09/24 | Published: 2016/12/13

References
1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 2006; 126(4): 663-76. [PubMed] [Google Scholar]
2. Zahiri M, Shafikhodaii S, Keshavarz H. Stem cells in review. Iran South Med J 2014; 17(4): 733-47. (Persian) [Google Scholar]
3. Naganuma T, Degan BM, Horikoshi K, et al. Myogenesis in primary cell cultures from larvae of the abalone, Haliotis rufescens. Mol Mar Biol Biotech 1994; 3(3): 131-40. [PubMed] [Google Scholar]
4. Rocha J, Peixe L, Gomes NC, et al. Cnidarians as a source of new marine bioactive compounds-an overview of the last decade and future steps for bioprospecting. Mar Drugs 2011; 9(10): 1860-86. [PubMed] [Google Scholar]
5. Haeckel E. Remarks on the protoplasm theory. Q J Microsc Sci 1869; 10: 223-9. [Google Scholar]
6. Barut BA, Zon LI. Realizing the potential of zebrafish as a model for human disease. Physiol Genomics 2000; 2(2): 49-51. [Google Scholar]
7. Orlova VV, Drabsch Y, Freund C, et al. Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler Thromb Vasc Biol 2014; 34(1): 177-86. [PubMed] [Google Scholar]
8. Cai X, Zhang Y. Marine invertebrate cell culture: a decade of development. J Oceanogr 2014; 70(5): 405-14. [Google Scholar]
9. Odintsova NA. Stem cells of marine invertebrates: Regulation of proliferation and induction of differentiation in vitro. Cell Tissue Biol 2009; 3(5): 403-8. [PubMed] [Google Scholar]
10. Rinkevich B. Marine invertebrate cell cultures: new millennium trends. Mar Biotechnol 2005; 7(5): 429-39. [PubMed] [Google Scholar]
11. Rinkevich B. Cell cultures from marine invertebrates: new insights for capturing endless stemness. Mar Biotechnol 2011; 13(3): 345-54. [PubMed] [Google Scholar]
12. Jayesh P, Seena J, Singh IS. Establishment of shrimp cell lines: perception and orientation. Indian J Virol 2012; 23(2): 244-51. [PubMed] [Google Scholar]
13. Rinkevich Y, Paz G, Rinkevich B, et al. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in urochordate Botrylloides leachi. PLoS Biol 2007; 5(4): e71. [PubMed] [Google Scholar]
14. Jiang G, Xu X, Jing Y, et al. Comparative studies on sorting cells from Artemia sinica at different developmental stages for in vitro cell culture. In Vitro Cell Dev Biol Anima 2011; 47(5-6): 341-5. [PubMed] [Google Scholar]
15. Crane MS. Mutagensis and cell transformation in cell culture. Methods Cell Sci 1999; 21(4): 245-53. [PubMed] [Google Scholar]
16. Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol 2006; 4(3): e83. [PubMed] [Google Scholar]
17. Rinkevich B. Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 1999; 70(1): 133-53. [Google Scholar]
18. Pomponi SA. Biology of the Porifera: cell culture. Can J Zool 2006; 84(2): 167-74. [Google Scholar]
19. van der Merwe M, Auzoux-Bordenave S, Niesler C, et al. Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues. Cytotechnology 2010; 62(3): 265-77. [PubMed] [Google Scholar]
20. Sipkema D, van Wielink R, van Lammeren AA, et al. Primmorphs from seven marine sponges: formation and structure. J Biotechnol 2003; 100(2): 127-39. [PubMed] [Google Scholar]
21. Zhao Q, Zhang W, Jin M, et al. Formulation of a basal medium for primary cell culture of the marine sponge Hymeniacidon perleve. Biotechnology Prog 2005; 21(3): 1008-12. [PubMed] [Google Scholar]
22. Funayama N. The stem cell system in demosponges: insights into the origin of somatic stem cells. Dev growth Differ 2010; 52(1): 1-14. [PubMed] [Google Scholar]
23. Zhao Y, Wang DO, Martin KC. Preparation of Aplysia sensory-motor neuronal cell cultures. J Vis Exp 2009; 8(28): e1355. [PubMed]
24. Travers MA, Mirella da Silva P, Le Goïc N, et al. Morphologic, cytometric and functional characterisation of abalone (Haliotis tuberculata) haemocytes. Fish Shellfish Immunol 2008; 24(4): 400-11. [PubMed] [Google Scholar]
25. You Y, Huan P, Wang X, et al. The potential roles of a laminin receptor in adhesion and apoptosis of cells of the marine bivalve Meretrix meretrix. PloS one 2012; 7(10): e47104. [PubMed] [Google Scholar]
26. Hu GB, Wang D, Wang CH, et al. A novel immortalization vector for the establishment of penaeid shrimp cell lines. In Vitro Cell Dev Biol Anim 2008; 44(3-4): 51-6. [PubMed] [Google Scholar]
27. Bulgakov VP, Odintsova NA, Plotnikov SV, et al. Gal4-gene-dependent alterations of embryo development and cell growth in primary culture of sea urchins. Mar Biotechnol 2002; 4(5): 480-6. [PubMed] [Google Scholar]
28. Grasela JJ, Pomponi SA, Rinkevich B, et al. Efforts to develop a cultured sponge cell line: revisiting an intractable problem. In Vitro Cell Dev Biol Anim 2012; 48(1): 12-20 [PubMed] [Google Scholar]
29. Lang GH, Wang Y, Nomura N, et al. Detection of telomerase activity in tissues and primary cultured lymphoid cells of Penaeus japonicus. Mar Biotechnol 2004; 6(4): 347-54. [PubMed] [Google Scholar]
30. Claydon K, Owens L. Attempts at immortalization of crustacean primary cell cultures using human cancer genes. In Vitro Cell Dev Biol Animal 2008; 44(10): 451-7. [PubMed] [Google Scholar]
31. Maeda M, Mizuki E, Itami T, et al. Ovarian primary tissue culture of the kuruma shrimp Marsupenaeus japonicus. In Vitro Cell Dev Biol Anim 2003; 39(5-6): 208-12. [PubMed] [Google Scholar]
32. Domart-Coulon IJ, Sinclari CS, Hill Rt, et al. A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells. Mar Biol 2004; 144(3): 583-92. [Google Scholar]
33. Hurton LV, Berkson JM, Smith SA. Selection of a standard culture medium for primary culture of Limulus polyphemus amebocytes. In Vitro Cell Dev Biol Anim 2005; 41(10): 325-9. [PubMed] [Google Scholar]
34. George SK, Dhar AK. An improved method of cell culture system from eye stalk, hepatopancreas, muscle, ovary, and hemocytes of Penaeus vannamei. In Vitro Cell Dev Biol Anim 2010; 46(9): 801-10. [PubMed] [Google Scholar]
35. Wang C, Zhang S, Su F, et al. Initiation of primary cell culture from amphioxus Branchiostoma belcheri tsingtauense. Chinese J Oceanol Limnol 2009; 27: 69-73. [Google Scholar]
36. Cai X, Wang H, Huang L, et al. Establishing primary cell cultures from Branchiostoma belcheri Japanese. In Vitro Cell Dev Biol Anim 2013; 49(2): 97-102. [PubMed] [Google Scholar]
37. Joshi B, Chatterji A, Bhonde R. Long-term in vitro generation of amoebocytes from the Indian horseshoe crab Tachypleus gigas (Müller). In Vitro Cell Dev Biol Anim 2002; 38(5): 255-7. [PubMed] [Google Scholar]
38. Krasko A, Schröder HC, Batel R, et al. Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 2002; 21(1): 67-80. [PubMed] [Google Scholar]
39. Richelle-Maurer E, Gomez R, Braekman JC, et al. Primary cultures from the marine sponge Xestospongia muta (Petrosiidae, Haplosclerida). J Biotechnol 2003; 100(2): 169-76. [PubMed] [Google Scholar]
40. Cao A, Mercado L, Ramos-Martinez JI, et al. Primary cultures of hemocytes from Mytilus galloprovincialis Lmk.: expression of IL-2Rα subunit. Aquaculture 2003; 216(1): 1-8. [Google Scholar]
41. Sun L, Song Y, Qu Y, et al. Purification and in vitro cultivation of archaeocytes (stem cells) of the marine sponge Hymeniacidon perleve (Demospongiae). Cell Tissue Res 2007; 328(1): 223-37. [PubMed] [Google Scholar]
42. Estephane D, Anctil M. Retinoic acid and nitric oxide promote cell proliferation and differentially induce neuronal differentiation in vitro in the cnidarian Renilla koellikeri. Dev Neurobiol 2010; 70(12): 842-52. [PubMed] [Google Scholar]
43. Stepanyan R, Hollins B, Brock SE, et al. Primary culture of lobster (Homarus americanus) olfactory sensory neurons. Chem Senses 2004; 29(3): 179-87. [PubMed] [Google Scholar]
44. Jose S, Jayesh P, Sudheer NS, et al. Lymphoid organ cell culture system from Penaeus monodon (Fabricius) as a platform for white spot syndrome virus and shrimp immune‐related gene expression. J Fish Dis 2012 35(5): 321-34. [PubMed] [Google Scholar]
45. Odintsova NA, Dolmatov IY, Mashanov VS. Regenerating holothurian tissues as a source of cells for long-term cell cultures. Mar Biol 2005; 146(5): 915-21. [Google Scholar]
46. Zhao Q, Jin M, Müller WE, et al. Attachment of marine sponge cells of Hymeniacidon perleve on microcarriers. Biotechnol Prog 2003; 19(5): 1569-73. [PubMed] [Google Scholar]
47. Pozzolini M, Valisano L, Cerrano C, et al. Influence of rocky substrata on three-dimensional sponge cells model development. In Vitro Cell Dev Biol Anim 2010; 46(2): 140-7. [PubMed] [Google Scholar]
48. Faulk DM, Johnson SA, Zhang L, et al. Role of the extracellular matrix in whole organ engineering. J Cell Physiol 2014; 229(8): 984-9. [PubMed] [Google Scholar]
49. Ilan M, Contini H, Carmeli S, et al. Progress towards cell cultures from a marine sponge that produces bioactive compounds. J Mar Biotechnol 1996; 4: 145-9. [Google Scholar]
50. Custódio MR, Hajdu E, Muricy G. Cellular dynamics of in vitro allogeneic reactions of Hymeniacidon heliophila (Demospongiae: Halichondrida). Mar Biol 2004; 144(5): 999-1010. [Google Scholar]
51. Müller WE, Böhm M, Batel R, et al. Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara. J Nat Prod 2000; 63(8): 1077-81. [PubMed] [Google Scholar]
52. Willoughby R, Pomponi SA. Quantitative assessment of marine sponge cells in vitro: development of improved growth medium. In Vitro Cell Dev Biol Anim 2000; 36(3): 194-200. [PubMed] [Google Scholar]
53. Zhang X, Le Pennec G, Steffen R, et al. Application of a MTT assay for screening nutritional factors in growth media of primary sponge cell culture. Biotechnol Prog 2004; 20(1): 151-5. [PubMed] [Google Scholar]
54. Frank U, Plickert G, Müller WA. Cnidarian interstitial cells: the dawn of stem cell research. Stem cells in marine organisms. New York: Springer, 2009, 33-59. [Google Scholar]
55. Frank U, Rinkevich B. Scyphozoan jellyfish's mesoglea supports attachment, spreading and migration of anthozoans' cells in vitro. Cell Biol Int 1999; 23(4): 307-11. [PubMed] [Google Scholar]
56. Helman Y, Natale F, Sherrell RM, et al. Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc Natl Acad Sci USA 2008; 105(1): 54-8. [PubMed] [Google Scholar]
57. Domart-Coulon IJ, Elbert DC, Scully EP, et al. Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proc Natl Acad Sci USA 2001; 98(21): 11885-90. [PubMed] [Google Scholar]
58. Rinkevich B. Do reproduction and regeneration in damaged corals compete for energy allocation. Mar Ecol progr Ser 1996; 143(1): 297-302. [Google Scholar]
59. Schmid V, Alder H. Isolated, mononucleated, striated muscle can undergo pluripotent transdifferentiation and form a complex regenerate. Cell 1984; 38(3): 801-9. [PubMed] [Google Scholar]
60. De Mulder K, Kuales G, Pfister D, et al. Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 2009; 9(1): 69. [PubMed] [Google Scholar]
61. Candia Carnevali MD, Bonasoro F, Patruno M, et al. Cellular and molecular mechanisms of arm regeneration in crinoid echinoderms: the potential of arm explants. Dev Genes Evol 1998; 208(8): 421-30. [PubMed] [Google Scholar]
62. Carnevali, MC. Regeneration in Echinoderms: repair, regrowth, cloning. Inver Survival J 2006; 3: 64-76. [Google Scholar]
63. Rinkevich Y, Paz G, Rinkevich B, et al. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol 2007; 5(4): e71. [PubMed] [Google Scholar]
64. Fang Z, Feng Q, Chi Y, et al. Investigation of cell proliferation and differentiation in the mantle of Pinctada fucata (Bivalve, Mollusca). Mar Biol 2008; 153(4): 745-54. [Google Scholar]
65. Odintsova NA, Khomenko AV. Primary cell culture from embryos of the Japanese scallop Mizuchopecten yessoensis (Bivalvia). Cytotechnology 1991; 6(1): 49-54. [PubMed] [Google Scholar]
66. Chen SN, Wang CS. Establishment of cell lines derived from oyster, Crassostrea gigas Thunberg and hard clam, Meretrix lusoria Röding. Methods Cell Sci 1999; 21(4): 183-92. [PubMed] [Google Scholar]
67. Naganuma T, Degnan BM, Horikoshi K. Myogenesis in primary cell cultures from larvae of the abalone, Haliotis rufescens. Mol Mar Biol Biotechnol 1994; 3(3): 131-40. [PubMed] [Google Scholar]
68. Rabinowitz C, Rinkevich B. In vitro delayed senescence of extirpated buds from zooids of the colonial tunicate Botryllus schlosseri. J Exp Biol 2004; 207(Pt9): 1523-32. [PubMed] [Google Scholar]
69. Kawamura K, Fujiwara S. Establishment of cell lines from multipotent epithelial sheet in the budding tunicate, Polyandrocarpa misakiensis. Cell Struct Funct 1995; 20(1): 97-106. [PubMed] [Google Scholar]
70. Rinkevich Y, Matranga V, Rinkevich B. Stem cells in aquatic invertebrates: common premises and emerging unique themes. Stem Cells in Marine Organisms. New York: Springer, 61-103. [Google Scholar]
71. Manni L, Zaniolo G, Cima F, et al. Botryllus schlosseri: a model ascidian for the study of asexual reproduction. Dev Dyn 2007; 236(2): 335-52. [Google Scholar]
72. Mukai H, Koyama H, Watanabe H. Studies on the reproduction of three species of Perophora (Ascidiacea). Biol Bull 1983; 164(2): 251-66. [Google Scholar]
73. Rosner A, Paz G, Rinkevich B. Divergent roles of the DEAD‐box protein BS‐PL10, the urochordate homologue of human DDX3 and DDX3Y proteins, in colony astogeny and ontogeny. Dev Dyn 2006; 235(6): 1508-21. [PubMed] [Google Scholar]
74. Fraser CA, Hall MR. Studies on primary cell cultures derived from ovarian tissue of Penaeus monodon. Methods Cell Sci 1999; 21(4): 213-8. [PubMed] [Google Scholar]
75. Shukalyuk A, Isaeva V, Kizilova E, et al. Stem cells in the reproductive strategy of colonial rhizocephalan crustaceans (Crustacea: Cirripedia: Rhizocephala). Inver Reprod Dev 2005; 48(1-3): 41-53. [Google Scholar]
76. Söderhäll I, Bangyeekhun E, Mayo S, et al. Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Dev Comp Immunol 2003; 27(8): 661-72. [PubMed] [Google Scholar]
77. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266(5193): 2011-5. [PubMed] [Google Scholar]
78. Chen SN, Wang CS. Establishment of cell culture systems from penaeid shrimp and their susceptibility to white spot disease and yellow head viruses. Methods Cell Sci 1999; 21(4): 199-206. [PubMed] [Google Scholar]
79. De Mulder K, Kuales G, Pfister D, et al. Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 2009. 9(1): 69. [PubMed] [Google Scholar]
80. Toledo A, Cruz C, Fragoso G, et al. In vitro culture of Taenia crassiceps larval cells and cyst regeneration after injection into mice. J Parasitol 1997; 83(20): 189-93. [PubMed] [Google Scholar]

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian South Medical Journal

Designed & Developed by: Yektaweb