Volume 20, Issue 2 (Iranian South Medical Journal 2017)                   Iran South Med J 2017, 20(2): 217-244 | Back to browse issues page


XML Persian Abstract Print


The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , inabipour@gmail.com
Abstract:   (7688 Views)

Natural coral exoskeleton and coralline hydroxyapatite have been used as bone replacement graft for repairing of bone defects in animal models and humans since two decades ago. These bone replacement grafts have an osteoconductive, biodegradable and biocompatible features. Currently, three lines of researches in bone tissue engineering are conducting on corals. Corals have been used for construction of bony composites, stem cells attachments, and the growth factors-scaffold-based approaches. This review have paid to the wide range of coral use in clinical experiments as a bone graft substitute and cell-scaffold-based approaches in bone tissue engineering.

Full-Text [PDF 1792 kb]   (7768 Downloads)    
Type of Study: Review | Subject: Disorders of Systemic, Metabolic or Environmental Origin
Received: 2017/01/1 | Accepted: 2017/01/22 | Published: 2017/04/29

References
1. Tissue engineering and regenerative medicine. National Institute of Biomedical Imaging and Bioengineering (NIBIB). 2013. (Accessed Jul 4, 2016, at https://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-medicine) [Article]
2. Jabbarzadeh E, Blanchette J, Shazly T, et al. Vascularization of biomaterials for bone tissue engineering: current approaches and major challenges. Current Angiogenesis. 2012; 1(3): 180-91. [Google Scholar]
3. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004; 4(8): 743-65. [PubMed] [Google Scholar]
4. Castells-Sala C, Alemany-Ribes M, Fernández-Muiños T, et al. Current applications of tissue engineering in biomedicine. J Biochips & Tissue Chips 2013; S2: 1-14. [Google Scholar]
5. Sheikh Z, Najeeb S, Khurshid Z, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials 2015; 8(9): 5744-94. [Google Scholar]
6. Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res 2000; 51(3): 376-82. [PubMed] [Google Scholar]
7. Karimi I, Bigham-Sadegh A, Oryan A, et al. Concurrent use of greater omentum with persian gulf coral on bone healing in dog: a radiological and histopathological study. IJVS 2013; 8(2): 35-42. [Google Scholar]
8. Nabipour I. Megatrends in medicine. Bushehr: Bushehr University of Medical Sciences Press, 2014, 88. (Persian) [Google Scholar]
9. Hou R, Chen F, Yang Y, et al. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J Biomed Mater Res A 2007; 80(1): 85-93. [PubMed] [Google Scholar]
10. Nandi SK, Roy S, Mukherjee P, et al. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 2010; 132: 15-30. [PubMed] [Google Scholar]
11. Chiroff RT, White EW, Weber KN, et al. Tissue ingrowth of Replamineform implants. J Biomed Mater Res 1975; 9(4): 29-45. [PubMed] [Google Scholar]
12. Saha A, Yadav R, Rajendran N. Biomaterials from sponges, ascidians and other marine organisms. Int J Pharm Sci Rev 2014; 27(2): 100-9. [Google Scholar]
13. Clarke SA, Walsh P, Maggs CA, et al. Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 2011; 29(6): 610-7. [PubMed] [Google Scholar]
14. Silva TH, Alves A, Ferreira BM, et al. Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Materials Rev 2012; 57(5): 276-306. [Google Scholar]
15. Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2004; 2(2): 65-73. [PubMed] [Google Scholar]
16. Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974; 247(5438): 220-2. [PubMed] [Google Scholar]
17. Sivakumar M, Kumar TS, Shantha KL, et al. Development of hydroxyapatite derived from Indian coral. Biomaterials 1996; 17(17): 1709-14. [PubMed] [Google Scholar]
18. Demers C, Hamdy CR, Corsi K, et al. Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 2002; 12(1): 15-35. [PubMed] [Google Scholar]
19. Guillemin G, Patat JL, Fournie J, et al. The use of coral as a bone graft substitute. J Biomed Mater Res 1987; 21(5): 557-67. [PubMed] [Google Scholar]
20. Roux FX, Brasnu D, Loty B, et al. Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg 1988; 69(4): 510-3. [PubMed] [Google Scholar]
21. Pouliquen JC, Noat M, Verneret C, et al. Coral substituted for bone grafting in posterior vertebral arthrodesis in children. Initial results. Rev Chir Orthop Reparatrice Appar Mot 1989; 75(6): 360-9. [PubMed] [Google Scholar]
22. Papacharalambous SK, Anastasoff KI. Natural coral skeleton used as onlay graft for contour augmentation of the face. A preliminary report. Int J Oral Maxillofac Surg 1993; 22(5): 260-4. [PubMed] [Google Scholar]
23. Kumar VM, Govind GK, Siva B, et al. Corals as Bone Substitutes. J Int Oral Health 2016; 8(1): 96-102. [Google Scholar]
24. Jeyabaskaran R, Lyla PS, Khan SA. Coral: [Google Scholar]
25. Knackstedt MA, Arns CH, Senden TJ, et al. Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials 2006; 27(13): 2776-86. [PubMed] [Google Scholar]
26. Chou J, Hao J, Ben-Nissan B, et al. Coral exoskeletons as a precursor material for the development of a calcium phosphate drug delivery system for bone tissue engineering. Biol Pharm Bull 2013; 36(11): 1662-5. [PubMed] [Google Scholar]
27. Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J 2016; 98-B(1 Suppl A): 6-9. [PubMed] [Google Scholar]
28. Holmes RE. Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 1979; 63(5): 626-33. [PubMed] [Google Scholar]
29. Holmes R, Mooney V, Bucholz R, et al. A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop Relat Res 1984; (188): 252-62. [PubMed] [Google Scholar]
30. Sartoris DJ, Gershuni DH, Akeson WH, et al. Coralline hydroxyapatite bone graft substitutes: preliminary report of radiographic evaluation. Radiology 1986; 159(1): 133-7. [PubMed] [Google Scholar]
31. Sartoris DJ, Holmes RE, Bucholz RW, et al. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation. Invest Radiol 1987; 22(7): 590-6. [Google Scholar]
32. Mora F, Ouhayoun JP. Clinical evaluation of natural coral and porous hydroxyapatite implants in periodontal bone lesions: results of a 1-year follow-up. J Clin Periodontol 1995; 22(11): 877-84. [PubMed] [Google Scholar]
33. Preidler KW, Lemperle SM, Holmes RE, et al. Coralline hydroxyapatite bone graft substitutes. Evaluation of bone density with dual energy x-ray absorptiometry. Invest Radiol 1996; 31(11): 716-23. [PubMed] [Google Scholar]
34. Elsinger EC, Leal L. Coralline hydroxyapatite bone graft substitutes. J Foot Ankle Surg 1996; 35(5): 396-9. [PubMed] [Google Scholar]
35. Rahimi F, Maurer BT, Enzweiler MG. Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery. J Foot Ankle Surg 1997; 36(3): 192-203. [PubMed] [Google Scholar]
36. Coughlin MJ, Grimes JS, Kennedy MP. Coralline hydroxyapatite bone graft substitute in hindfoot surgery. Foot Ankle Int 2006; 27(1): 19-22. [PubMed] [Google Scholar]
37. Thalgott JS, Klezl Z, Timlin M, et al. Anterior lumbar interbody fusion with processed sea coral (coralline hydroxyapatite) as part of a circumferential fusion. Spine (Phila Pa 1976) 2002; 27(24): E518-25. [PubMed] [Google Scholar]
38. Korovessis P, Repanti M, Koureas G. Does coralline hydroxyapatite conduct fusion in instrumented posterior spine fusion. Stud Health Technol Inform 2002; 91: 109-13. [PubMed] [Google Scholar]
39. Mendelson BC, Jacobson SR, Lavoipierre AM, et al. The fate of porous hydroxyapatite granules used in facial skeletal augmentation. Aesthetic Plast Surg 2010; 34(4): 455-61. [PubMed] [Google Scholar]
40. Fu K, Xu Q, Czernuszka J, et al. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Biomed Mater 2013; 8(6): 065007. [PubMed] [Google Scholar]
41. Michel J, Penna M, Kochen J, et al. Recent advances in hydroxyapatite scaffolds containing mesenchymal stem cells. Stem Cells Int 2015; 2015: 305217. [PubMed] [Google Scholar]
42. Zhang S, Mao T, Wang H. An experimental study on the bone repairing ability of recombinant human bone morphogenetic protein-2-coral composited artificial bone. Zhonghua Kou Qiang Yi Xue Za Zhi 1998; 33(1): 13-4. [PubMed] [Google Scholar]
43. Arnaud E, De Pollak C, Meunier A, et al. Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 1999; 20(20): 1909-18. [PubMed] [Google Scholar]
44. Chen F, Chen S, Tao K, et al. Marrow-derived osteoblasts seeded into porous natural coral to prefabricate a vascularised bone graft in the shape of a human mandibular ramus: experimental study in rabbits. Br J Oral Maxillofac Surg 2004; 42(6): 532-7. [PubMed] [Google Scholar]
45. Ma Q, Mao T, Liu B, et al. Vascular osteomuscular autograft prefabrication using coral, type I collagen and recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg 2000; 38(5): 561-4. [PubMed] [Google Scholar]
46. Al-Salihi KA. Tissue-engineered bone via seeding bone marrow stem cell derived osteoblasts into coral: a rat model. Med J Malaysia 2004; 59 Suppl B: 200-1. [PubMed] [Google Scholar]
47. Liu G, Zhang Y, Liu B, et al. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Biomaterials 2013; 34(11): 2655-64. [PubMed] [Google Scholar]
48. Geiger F, Lorenz H, Xu W, et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 2007; 41(4): 516-22. [PubMed] [Google Scholar]
49. AL-Salihi KA. In vitro evaluation of Malaysian natural coral porites bone graft substitutes (CORAGRAF) for bone tissue engineering: A preliminary study. Braz J Oral Sci 2009; 8(4): 210-16. [Google Scholar]
50. Tran CT, Gargiulo C, Thao HD, et al. Culture and differentiation of osteoblasts on coral scaffold from human bone marrow mesenchymal stem cells. Cell Tissue Bank 2011; 12(4): 247-61. [PubMed] [Google Scholar]
51. Tripathi A, Murthy PSN, Keshri G, et al. Tissue Engineered Osteogenesis in Bone Defects by Homologous Osteoblasts Loaded on Sterile Bioresorbable Coral Scaffold in Rabbits. Surg Sci 2011; 2(7): 369-75. [Google Scholar]
52. Cai L, Wang Q, Gu C, et al. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering. Biomaterials 2011; 32(33): 8497-505. [PubMed] [Google Scholar]
53. Shafiei-Sarvestani Z, Oryan A, Bigham AS, et al. The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg 2012; 10(2): 96-101. [PubMed] [Google Scholar]
54. Liu G, Zhang Y, Liu B, et al. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Biomaterials 2013; 34(11): 2655-64. [PubMed] [Google Scholar]
55. Manassero M, Viateau V, Deschepper M, et al. Bone regeneration in sheep using acropora coral, a natural resorbable scaffold, and autologous mesenchymal stem cells. Tissue Eng Part A 2013; 19(13-14): 1554-63. [PubMed] [Google Scholar]
56. Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, et al. A Comparative Study on Morphochemical Properties and Osteogenic Cell Differentiation within Bone Graft and Coral Graft Culture Systems. Int J Med Sci 2013; 10(12): 1608-14. [PubMed] [Google Scholar]
57. Geng W, Ma D, Yan X, et al. Engineering tubular bone using mesenchymal stem cell sheets and coral particles. Biochem Biophys Res Commun 2013; 433(4):595-601. [PubMed] [Google Scholar]
58. Nandi SK, Kundu B, Mukherjee J, et al. Converted marine coral hydroxyapatite implants with growth factors: in vivo bone regeneration. Mater Sci Eng C Mater Biol Appl 2015; 49: 816-23. [PubMed] [Google Scholar]
59. Zamani S, Mobasherpour I, Salahi E. Synthesis of nano calcium hydroxyapatite from Persian Gulf coral. Proceedings of the 4th international conference on Nanostructures (ICNS4): 2012 March 12-14, Kish Island, Iran. Tehran: Sharif University of Technology 2012; 775-7. [Google Scholar]
60. Parizi AM, Oryan A, Shafiei-Sarvestani Z, et al. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med 2012; 23(2): 473-83. [PubMed] [Google Scholar]
61. Parizi AM, Oryan A, Shafiei-Sarvestani Z, et al. Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction. J Orthop Traumatol 2013; 14(4): 259-68. [PubMed] [Google Scholar]
62. Leal MC, Calado R, Sheridan C, et al. Coral aquaculture to support drug discovery. Trends Biotechnol 2013; 31(10): 555-61. [PubMed] [Google Scholar]
63. Sergeeva NS, Britaev TA, Sviridova IK, et al. Scleractinium coral aquaculture skeleton: a possible 3D scaffold for cell cultures and bone tissue engineering. Bull Exp Biol Med 2014; 156(4): 504-8. [PubMed] [Google Scholar]
64. Miura T, Yokokawa R. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices. Dev Growth Differ 2016; 58(6): 505-15. [PubMed] [Google Scholar]
65. Davies JA, Cachat E. Synthetic biology meets tissue engineering. Biochem Soc Trans 2016; 44(3): 696-701. [PubMed] [Google Scholar]
66. Green DW, Padula MP, Santos J, et al. A therapeutic potential for marine skeletal proteins in bone regeneration. Mar Drugs 2013; 11(4): 1203-20. [PubMed] [Google Scholar]

Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.