دوره 21، شماره 2 - ( دوماهنامه طب جنوب 1397 )                   جلد 21 شماره 2 صفحات 185-162 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- مرکز تحقیقات زیست فناوری دریایی خلیج‌فارس، پژوهشکده علوم زیست پزشکی خلیج‌فارس، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران
2- گروه ایمونولوژی و آلرژی، مرکز تحقیقات طب گرمسیری و عفونی خلیج‌فارس، پژوهشکده‌ علوم زیست پزشکی خلیج‌فارس، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران
3- مرکز تحقیقات استئوپوروز، پژوهشکده علوم بالینی غدد درون‌ریز و متابولیسم، دانشگاه علوم پزشکی تهران، تهران، ایران
4- گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی بوشهر، بوشهر، ایران
5- گروه آمار زیستی، دانشکده بهداشت، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران
6- معاونت بهداشتی، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران
7- گروه محیط زیست، پژوهشکده خلیج فارس، دانشگاه خلیج فارس، بوشهر، ایران
8- گروه ایمونولوژی و آلرژی، مرکز تحقیقات طب گرمسیری و عفونی خلیج‌فارس، پژوهشکده‌ علوم زیست پزشکی خلیج‌فارس، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران ، sh.farokhi@bpums.ac.ir
چکیده:   (11367 مشاهده)
صنایع گاز و پتروشیمی مستقر در عسلویه علیرغم رونق اقتصادی برای کشور، اثرات بهداشتی و زیست محیطی برای مردم منطقه ایجاد نموده است. هدف این مطالعه، جمع‌بندی و مرور مطالعاتی است که تاکنون در خصوص اثرات صنایع مذکور در منطقه صورت گرفته است. مطالعات نشان داد که صنایع گاز و پتروشیمی در منطقه عسلویه انواع مختلفی از آلاینده‌ها شامل ذرات معلق (PM10، PM 2.5)، فلزات سنگین و آلاینده‌های خطرناک در هوا مانند هیدروکربن‌های آروماتیک چند حلقه‌ای، بنزن، هگزان، تولوئن، گزیلن و پروپیلن، نیکل، سرب و کادمیوم را به محیط انتشار می‌دهند که اثرات سوء جبران‌ناپذیری بر سلامت انسان و اکوسیستم دارند. حضور آلاینده‌های خطرناکی نظیر فلزات سنگین و هیدروکربن‌های آروماتیک چند حلقه‌ای در رسوبات ساحلی منطقه پارس جنوبی در مطالعات متعددی ردیابی شده است. همچنین مطالعات انجام شده بر روی آبزیان دریایی نظیر صدف‌ها حاکی از غلظت‌های بسیار بالا و سمی فلزات سنگین کادمیوم، سرب، آرسینیک، استرنسیوم، قلع، نقره، آنتیموان، و مولیبیدن بوده است. بررسی‌های متعدد دیگری ثابت کرده‌اند سطح بسیار بالای غلظت فلزات سنگین در درختان منطقه عسلویه در مقایسه با مناطق غیرآلوده وجود دارد. جالب‌تر اینکه مطالعات گزارش کرده‌اند به‌علت تغییرات پروفایل پروتئینی و ساختار زیست شناختی گرده درختان ناشی از آلودگی‌های صنعت گاز و پتروشیمی در منطقه عسلویه، حساسیت زایی گرده درختان در مقایسه با مناطق غیرآلوده به شدت افزایش یافته است. به‌علاوه مطالعات انجام شده بر روی ساکنین منطقه عسلویه نشان داد سطح ادراری فلزات سنگین آرسینیک، وانادیوم، منگنز و نیکل افزایش قابل ملاحظه‌ای دارد. همچنین شیوع بیماری‌های آسم، آلرژی بینی و اگزما نیز در منطقه عسلویه نسبت به سایر شهرهای ایران شیوع بالاتری دارد. بطور کلی، این مطالعه تأکید می‌کند که پایش‌های سازمان‌های متولی سلامت مردم و محیط زیست جهت حفظ و ارتقاء کیفیت زندگی و کاهش بار بیماری‌ها و همچنین تهیه راهکاری مدون برای پیشگیری از آلودگی تشدید گردد.
متن کامل [PDF 1290 kb]   (20690 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: عمومى
دریافت: 1396/12/22 | پذیرش: 1397/2/14 | انتشار: 1397/4/20

فهرست منابع
1. Shammas P. Iran: Review of petroleum developments and assessments of the oil and gas fields. Energy exploration & exploitation 2001; 19(2): 207-60. [DOI:10.1260/0144598011492552]
2. Sharma A, Sharma P, Sharma A, et al. Hazardous Effects of Petrochemical Industries: A Review. RAPSCI 2017; 3(2): 001-3. [DOI:10.19080/RAPSCI.2017.03.555607]
3. Axelsson G, Stockfelt L, Andersson E, et al. Annoyance and worry in a petrochemical industrial area-Prevalence, time trends and risk indicators. Int J Environ Res Public Health 2013; 10(4): 1418-38. [DOI:10.3390/ijerph10041418]
4. Al-Wahaibi A, Zeka A. Health impacts from living near a major industrial park in Oman. BMC public health 2015; 15(1): 524. [DOI:10.1186/s12889-015-1866-3]
5. Dobaradaran S, Mohamadzadeh F. Servey of the oil and gas pollutant impacts on the human and environment. ISMJ 2014; 17(1): 85-98. [Article]
6. Šoštarić A, Stojić A, Stojić SS, et al. Quantification and mechanisms of BTEX distribution between aqueous and gaseous phase in a dynamic system. Chemosphere 2016; 144: 721-7. [DOI:10.1016/j.chemosphere.2015.09.042]
7. Ghorani-Azam A, Riahi-Zanjani B, Balali-Mood M. Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci 2016; 21: 65. [DOI:10.4103/1735-1995.189646]
8. Leili M, Farjadfard S, Sorial GA, et al. Simultaneous biofiltration of BTEX and Hg from a petrochemical waste stream. J Environ Manage 2017; 204: 531-9. [DOI:10.1016/j.jenvman.2017.09.033]
9. Saidi M, Siavashi F, Rahimpour M. Application of solid oxide fuel cell for flare gas recovery as a new approach; a case study for Asalouyeh gas processing plant, Iran. Journal of Natural Gas Science and Engineering 2014; 17: 13-25. [DOI:10.1016/j.jngse.2013.12.005]
10. Kafaei R, Tahmasbi R, Ravanipour M, et al. Urinary arsenic, cadmium, manganese, nickel, and vanadium levels of schoolchildren in the vicinity of the industrialised area of Asaluyeh, Iran. Environ Sci Pollut Res Int 2017; 24(30): 23498-507. [DOI:10.1007/s11356-017-9981-6]
11. Abdollahi S, Raoufi Z, Faghiri I, et al. Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran. Mar Pollut Bull 2013; 71(1-2): 336-45. [DOI:10.1016/j.marpolbul.2013.01.025]
12. Fakhri A MM. Health Impact Assessment and itsContextual Influencing Factors in Iran. Hakim Health Syst Res J 2016; 18(4): 316-28. [Article]
13. Mindell J, Sheridan L, Joffe M, et al. Health impact assessment as an agent of policy change: improving the health impacts of the mayor of London's draft transport strategy. J Epidemiol Community Health 2004; 58(3): 169-74. [DOI:10.1136/jech.2003.012385]
14. National Health Standards Requiement of Iran 2013 [cited 10 Jun 2012]. Available from: URL: http://vcm.iums.ac.ir/uploads/estandard_pavast_salamat.pdf. (Persian) [Link]
15. Dehghani M, Nabipour I, Dobaradaran S, et al. Cd and Pb Concentrations in the Surface Sediments of the Asaluyeh Bay, Iran. JCHR 2014; 3(1): 22-30. [Article]
16. Karbasdehi VN, Dobaradaran S, Nabipour I, et al. Data on metal contents (As, Ag, Sr, Sn, Sb, and Mo) in sediments and shells of Trachycardium lacunosum in the northern part of the Persian Gulf. Data in brief 2016; 8: 966-71. [DOI:10.1016/j.dib.2016.06.065]
17. Karbasdehi VN, Dobaradaran S, Nabipour I, et al. A new bioindicator, shell of Trachycardium lacunosum, and sediment samples to monitors metals (Al, Zn, Fe, Mn, Ni, V, Co, Cr and Cu) in marine environment: The Persian Gulf as a case. J Environ Health Sci Eng 2016; 14(1): 16. [DOI:10.1186/s40201-016-0260-0]
18. Haghshenas A, Hatami-manesh M, Mirzaei M, et al. Measurement and Evaluation of Ecological Risk of Heavy Metals in Surface Sediments of Pars Special Economic Energy Zone. Iran South Med J 2017; 20 (5): 448-69. [Article]
19. Raeisi A, Arfaeinia H, Seifi M, et al. Polycyclic aromatic hydrocarbons (PAHs) in coastal sediments from urban and industrial a reas of Asaluyeh Harbor, Iran: distribution, potential source and ecological risk assessment. Water Sci Technol 2016; 74(4): 957-73. [DOI:10.2166/wst.2016.265]
20. Long ER, Macdonald DD, Smith SL, et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental management 1995; 19(1): 81-97. [DOI:10.1007/BF02472006]
21. Wenzl T, Simon R, Anklam E, et al. Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European ::::::union::::::. Trends Analyt Chem 2006; 25(7): 716-25. [DOI:10.1016/j.trac.2006.05.010]
22. Arfaeinia H, Nabipour I, Ostovar A, et al. Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity. Environ Sci Pollut Res Int 2016; 23(10): 9871-90. [DOI:10.1007/s11356-016-6189-0]
23. Prica M, Dalmacija B, Rončević S, et al. A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Sci Total Environ 2008; 389(2-3): 235-44. [DOI:10.1016/j.scitotenv.2007.09.006]
24. Li F, Lin J-q, Liang Y-y, et al. Coastal surface sediment quality assessment in Leizhou Peninsula (South China Sea) based on SEM-AVS analysis. Mar Pollut Bull 2014; 84(1-2): 424-36. [DOI:10.1016/j.marpolbul.2014.04.030]
25. U.S.E.P.A (United States Environmental Protection Agency). The incidence and severity of sediment contamination in surface waters of the United States, National Sediment Quality Survey. 2th ed, Washington, DC: U.S. Environmental Protection Agency, Office of Science and Technology, Standards and Health Protection Division, 2004, 1-278. Available: https://nepis.epa.gov/Exe/ZyPDF.cgi/901U0O00.PDF?Dockey =901U0O00.PDF [Article]
26. Yazdan Panah A, Javadi Nasab E, Nazariha M, et al. Investigation of heavy metals and oil hydrocarbons in coastal sediments of Asalouyeh area. The 2nd National Conference on Environmental Health of Iran; Shahid Beheshti University of Medical Sciences: Tehran; 2009, 2528-35. [Article]
27. Dehghani M, Nabipour I, Dobaradaran S, et al. Trace metals level in sediments and bivalve Trachycardium lacunosum shell in the Persian Gulf. Int J Environ Sci Te 2017; 1-10. [DOI:10.1007/s13762-017-1584-8]
28. Safari M, Ramavandi B, Sanati AM, et al. Potential of trees leaf/bark to control atmospheric metals in a gas and petrochemical zone. J Environ Manage 2018; 222: 12-20 [DOI:10.1016/j.jenvman.2018.05.026]
29. Salehi M, Majd A, Jonoubi P, et al. Effect of environmental pollution on the proteins, allergenic bands, ontogeny and structure of Avicennia marina (Forsk.) Vierh (Avicenniaceae) pollen grains. Aerobiologia 2014; 30(1): 59-69. [DOI:10.1007/s10453-013-9309-z]
30. Salehi M, Majd A, Kardar G, et al. Comparative study of Avicennia marina (Forsk.) Vierh. pollens allergenicity in two regions of Bushehr province in Iran. Advances in Environmental Biology 2012: 6(5): 1758-1764. [Article]
31. Gumpu MB, Sethuraman S, Krishnan UM, et al. A review on detection of heavy metal ions in water-An electrochemical approach. Sens Actuators B Chem 2015; 213: 515-33. [DOI:10.1016/j.snb.2015.02.122]
32. Angerer J, Ewers U, Wilhelm M. Human biomonitoring: state of the art. Int J Hyg Environ Health 2007; 210(3-4): 201-28. [DOI:10.1016/j.ijheh.2007.01.024]
33. Černá M, Krsková A, Čejchanová M, et al. Human biomonitoring in the Czech Republic: an overview. Int J Hyg Environ Health 2012; 215(2): 109-19. [DOI:10.1016/j.ijheh.2011.09.007]
34. Aguilera I, Daponte A, Gil F, et al. Urinary levels of arsenic and heavy metals in children and adolescents living in the industrialised area of Ria of Huelva (SW Spain). Environment international 2010; 36(6): 563-9. [DOI:10.1016/j.envint.2010.04.012]
35. Khudzari JM, Wagiran H, Hossain I, et al. Screening heavy metals levels in hair of sanitation workers by X-ray fluorescence analysis. J Environ Radioact 2013; 115: 1-5. [DOI:10.1016/j.jenvrad.2012.05.013]
36. Were FH, Njue W, Murungi J, et al. Use of human nails as bio-indicators of heavy metals environmental exposure among school age children in Kenya. Sci Total Environ 2008; 393 (2-3): 376-84. [DOI:10.1016/j.scitotenv.2007.12.035]
37. Liu K-s, Hao J-h, Xu Y-q, et al. Breast milk lead and cadmium levels in suburban areas of Nanjing, China. Chin Med Sci J 2013; 28(1): 7-15. [DOI:10.1016/S1001-9294(13)60012-7]
38. Jiang C-B, Yeh C-Y, Lee H-C, et al. Mercury concentration in meconium and risk assessment of fish consumption among pregnant women in Taiwan. Sci Total Environ 2010; 408(3): 518-23. [DOI:10.1016/j.scitotenv.2009.10.043]
39. Xu D-X, Shen H-M, Zhu Q-X, et al. The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res 2003; 534(1): 155-63. [DOI:10.1016/S1383-5718(02)00274-7]
40. Al-Saleh I, Shinwari N, Mashhour A, et al. Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health 2011; 214(2): 79-101. [DOI:10.1016/j.ijheh.2010.10.001]
41. Appleton J, Lee K, Kapusta KS, et al. The heavy metal content of the teeth of the bank vole (Clethrionomys glareolus) as an exposure marker of environmental pollution in Poland. Environ Pollut 2000; 110(3): 441-9. [DOI:10.1016/S0269-7491(99)00318-8]
42. Hu H, Rabinowitz M, Smith D. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 1998; 106(1): 1-8. [DOI:10.1289/ehp.981061]
43. Kim J, De Araujo WR, Samek IA, et al. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem commun 2015; 51: 41-5. [DOI:10.1016/j.elecom.2014.11.024]
44. Masoli M, Fabian D, Holt S, et al . The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 2004; 59(5): 469-78. [DOI:10.1111/j.1398-9995.2004.00526.x]
45. Farrokhi S, Gheybi MK, Movahhed A, et al. Prevalence and Risk Factors of Asthma and Allergic Diseases in Primary Schoolchildren Living in Bushehr, Iran: Phase I, III ISAAC Protocol. Iran J Allergy Asthma Immunol 2014; 13(5): 348-55. [Article]
46. Hatami G, Amir Azodi E, Najafi A, et al. Prevalence and Severity of Asthma, Allergic Rhinitis and Atopic Eczema in 14-13 years-old Schoolchildren Living in Bushehr, Iran, Phase I, III ISAAC Protocol. Iran South Med J 2002; 5 (2): 167-75. [Article]
47. Hassanzadeh J, Mohammadbeigi A, Mousavizadeh A, et al. Asthma prevalence in Iranian guidance school children, a descriptive meta-analysis. J Res Med Sci 2012; 17(3): 293-7. [PubMed]
48. Gooya M, Shirkani A, Tahmasebi R, et al. Prevalence of Asthma and Allergic Diseases and Its Risk Factors in School Children Aged (6-7 and 13-14 Years) in Assalouyeh City, Bushehr Province Based on III ISAAC Protocol Phase I, in 2014. Iran South Med J 2017; 20 (1): 57-69. [DOI:10.18869/acadpub.ismj.20.1.57]
49. Edokpolo B, Yu QJ, Connell D. Health risk characterization for exposure to benzene in service stations and petroleum refineries environments using human adverse response data. Toxicol Rep 2015; 2: 917-27. [DOI:10.1016/j.toxrep.2015.06.004]
50. D'Andrea MA, Reddy GK. Illness symptoms experienced by children exposed to benzene after a flaring incident at the BP refinery facility in Texas City. Clin Pediatr (Phila) 2016; 55(12): 1143-51. [DOI:10.1177/0009922816641463]
51. D'Andrea MA, Reddy GK. Adverse health effects of benzene exposure among children following a flaring incident at the British petroleum refinery in Texas City. Clin Pediatr (Phila) 2016; 55(3):219-27. [DOI:10.1177/0009922815594358]
52. Mehlman MA. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry: VIII. Health effects of motor fuels: Carcinogenicity of gasoline-Scientific update. Environ Res 1992; 59(1): 238-49. [DOI:10.1016/S0013-9351(05)80243-9]
53. Wichmann FA, Müller A, Busi LE, et al. Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. J Allergy Clin Immunol 2009; 123(3): 632-8. [DOI:10.1016/j.jaci.2008.09.052]
54. Dahlgren J, Takhar H, Anderson-Mahoney P, et al. Cluster of systemic lupus erythematosus (SLE) associated with an oil field waste site: a cross sectional study. Environ Health 2007; 6(1):8. [DOI:10.1186/1476-069X-6-8]
55. Guidotti TL. Occupational exposure to hydrogen sulfide in the sour gas industry: some unresolved issues. Int Arch Occup Environ Health 1994; 66(3): 153-60. [DOI:10.1007/BF00380773]
56. Skrtic L. Hydrogen sulfide, oil and gas, and people's health Energy and Resources Group [dissertation]. Berkeley (CA): University of California, Berkeley., 2006. [Link]
57. Pignato S, Coniglio M, Rotondo A, et al. Prevalence of self-reported asthma and respiratory allergic symptoms in young adults living near a heavy polluted industrial area in Sicily. J Prev Med Hyg 2004; 45(3): 40-4. [Google Scholar]
58. Yang CY, Wang JD, Chan CC, et al. Respiratory symptoms of primary school children living in a petrochemical polluted area in Taiwan. Pediatr Pulmonol 1998; 25(5): 299-303. [DOI]
59. Yang C-Y, Wang J-D, Chan C-C, et al. Respiratory and irritant health effects of a population living in a petrochemical-polluted area in Taiwan. Environ Res 1997; 74(2): 145-9. [DOI]
60. Chiang T-Y, Yuan T-H, Shie R-H, et al. Increased incidence of allergic rhinitis, bronchitis and asthma, in children living near a petrochemical complex with SO2 pollution. Environ Int 2016; 96:1-7. [DOI:10.1016/j.envint.2016.08.009]
61. Pascal L, Pascal M, Stempfelet M, et al. Ecological Study on Hospitalizations for Cancer, Cardiovascular, and Respiratory Diseases in the Industrial Area of Etang-de-Berre in the South of France. J Environ Public Health 2013; 2013: 13. [DOI:10.1155/2013/328737]
62. Alhamdow A, Lindh C, Albin M, et al. Early markers of cardiovascular disease are associated with occupational exposure to polycyclic aromatic hydrocarbons. Sci Rep 2017; 7(1): 9426. [DOI:10.1038/s41598-017-09956-x]
63. Rehman K, Fatima F, Waheed I, et al. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 2018; 119(1): 157-84. [DOI:10.1002/jcb.26234]
64. Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 2007; 21(1): 28-44. [DOI:10.1021/tx700198a]
65. Bernard A. Cadmium & its adverse effects on human health. Indian J Med Res 2008; 128(4): 557-64. [Article]
66. Mahurpawar M. Effects of heavy metals on human health. Int J Res Granthaalayah 2015: 1-7. [Link]
67. Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014; 7(2): 60-72. [DOI:10.2478/intox-2014-0009]
68. Martin S, Griswold W. Human health effects of heavy metals. Environmental Science and Technology briefs for citizens 2009; 15:1-6. [Article]
69. Järup L. Hazards of heavy metal contamination. Br Med Bull 2003; 68(1): 167-82. [DOI:10.1093/bmb/ldg032]
70. Kravchenko J, Darrah TH, Miller Rket al. A review of the health impacts of barium from natural and anthropogenic exposure. Environ Geochem Health 2014; 36(4): 797-814. [DOI:10.1007/s10653-014-9622-7]
71. Yipel M, Yarsan E. A risk assessment of heavy metal concentrations in fish and an invertebrate from the Gulf of Antalya. Bull Environ Contam Toxicol 2014; 93(5): 542-8. [DOI:10.1007/s00128-014-1376-5]
72. Dehghan Madiseh S, Savari A, Parham H, et al. Heavy metals contaminant evaluation in sediments of Khour-e-Musa creeks, northwest of Persian Gulf. IJFS 2008; 7(2): 137-56. [Article]
73. Zhang L, Liao Q, Shao S, et al. Heavy metal pollution, fractionation, and potential ecological risks in sediments from Lake Chaohu (Eastern China) and the surrounding rivers. Int J Environ Res Public Health 2015; 12(11): 14115-31. [DOI:10.3390/ijerph121114115]
74. Pekey H, Karakaş D, Ayberk S, et al. Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Mar Pollut Bull 2004; 48(9-10): 946-53. [DOI:10.1016/j.marpolbul.2003.11.023]
75. Maanan M. Biomonitoring of heavy metals using Mytilus galloprovincialis in Safi coastal waters, Morocco. Environ Toxicol 2007; 22(5): 525-31. [DOI:10.1002/tox.20301]
76. Karbasi A. Environmental cleanup of waste oil from Persian Gulf. Energy Journal 1978(1): 26-41. (Persian) [Google Scholar]
77. Beg M, Al-Muzaini S, Saeed T, et al. Chemical contamination and toxicity of sediment from a coastal area receiving industrial effluents in Kuwait. Arch Environ Contam Toxicol 2001; 41(3): 289-97. [DOI:10.1007/s002440010251]
78. De Mora S, Fowler SW, Wyse E, et al. Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull 2004; 49(5-6): 410-24. [DOI:10.1016/j.marpolbul.2004.02.029]
79. Dadollahi AS, Safari A. Seaweed and direct assay of heavy metals in seawater and sediment of the Kish Island coast (Northeastern of the Persian Gulf). International Conference on Coastal Oceanography and Sustainable Marine Aquaculture (ICCOSMA). 2006:2-4 May 2006, Kota Kinabalu, Malaysia. [Article]
80. Reyahi Bakhteyari A, Mortazavi S. Measurement Of Pb And Cdl In The Shell Of Pinctada Radiata In Hendorabi Island. Pajouhesh and Sazandegi 2007; 74: 111-7. (Persian) [Article]
81. Dehghan Mediseh S. Identification of sensitive areas and under the dining Mahshahr using ecological and biological indicators [dissertation]. Ahvaz: University of Khorramshahr., 2007. (Persian) [Google Scholar]
82. Azimi A, Dadolahi Sohrab A, Safahieh A, et al. The Study of Heavy Metals (Hg, Cd, Pb and Cu) Levels in Sediments of North-West of Persian Gulf - Imam Khomeini Port. joc 2012; 3 (11) :33-41. (Persian) [Article]
83. Wang H-S, Cheng Z, Liang P, et al. Characterization of PAHs in surface sediments of aquaculture farms around the Pearl River Delta. Ecotoxicol Environ Saf 2010; 73(5): 900-6. [DOI:10.1016/j.ecoenv.2010.04.010]
84. Yan W, Chi J, Wang Z, et al. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China. Environ Pollut 2009; 157(6): 1823-30. [DOI:10.1016/j.envpol.2009.01.023]
85. De Luca G, Furesi A, Micera G, et al. Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Italy). Mar Pollut Bull 2005; 50(11): 1223-32. [DOI:10.1016/j.marpolbul.2005.04.021]
86. Kim GB, Maruya KA, Lee RF, et al. Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea. Mar Pollut Bull 1999; 38(1): 7-15. [DOI:10.1016/S0025-326X(99)80006-X]
87. Rogowska J, Kudłak B, Tsakovski S, et al. Surface sediments pollution due to shipwreck s/s "Stuttgart": a multidisciplinary approach. Stoch Environ Res Risk Assess 2015; 29(7): 1797-807. [DOI:10.1007/s00477-015-1054-0]
88. Gao H, Bai J, Xiao R, et al. Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stoch Environ Res Risk Assess 2013; 27(1): 275-84. [DOI:10.1007/s00477-012-0587-8]
89. Gold-Bouchot G, Sima-Alvarez R, Zapata-Perez O, et al. Histopathological effects of petroleum hydrocarbons and heavy metals on the American oyster (Crassostrea virginica) from Tabasco, Mexico. Mar Pollut Bull 1995; 31(4-12): 439-45. [DOI:10.1016/0025-326X(95)00171-I]
90. Lim P-E, Lee C-K, Din Z. Accumulation of heavy metals by cultured oysters from Merbok Estuary, Malaysia. Mar Pollut Bull 1995; 31(4- 12): 420-3. [DOI:10.1016/0025-326X(95)00144-C]
91. Sadig M, Alam I. Metal concentrations in pearl oyster, Pinctada radiata, collected from Saudi Arabian coast of the Arabian Gulf. Bull Environ Contam Toxicol 1989; 42(1): 111-8. [DOI:10.1007/BF01699211]
92. Martin G, George R, Shaiju P, et al. Toxic metals enrichment in the surficial sediments of a eutrophic tropical estuary (Cochin Backwaters, Southwest Coast of India). The Scientific World Journal 2012; 2012. [DOI:10.1100/2012/972839]
93. Sidoumou Z, Gnassia-Barelli M, Siau Y, et al. Heavy metal concentrations in molluscs from the Senegal coast. Environ Int 2006; 32(3): 384-7. [DOI:10.1016/j.envint.2005.09.001]
94. Hédouin L, Bustamante P, Churlaud C, et al. Trends in concentrations of selected metalloid and metals in two bivalves from the coral reefs in the SW lagoon of New Caledonia. Ecotoxicol Environ Saf 2009; 72(2): 372-81. [DOI:10.1016/j.ecoenv.2008.04.004]
95. Etim L, Akpan ER, Muller P. Temporal trends in heavy metal concentrations in the clam Egeria radiata (Bivalvia: Tellinacea: Donacidae) from the Cross River, Nigeria. Hydrobiologia 1991; 24(4): 327-33. [Link]
96. El-shenawy NS, Loutfy N, Soliman MF, et al. Metals bioaccumulation in two edible bivalves and health risk assessment. Environ Monit Assess 2016; 188(3): 139. [DOI:10.1007/s10661-016-5145-2]
97. Ugolini F, Tognetti R, Raschi A, et al. Quercus ilex L. as bioaccumulator for heavy metals in urban areas: effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban For Urban Green 2013; 12(4): 576-84. [DOI:10.1016/j.ufug.2013.05.007]
98. Sawidis T, Krystallidis P, Veros D, et al. A study of air pollution with heavy metals in Athens city and Attica basin using evergreen trees as biological indicators. Biol Trace Elem Res 2012; 148(3): 396-408. [DOI:10.1007/s12011-012-9378-9]
99. Sawidis T, Breuste J, Mitrovic M, et al. Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 2011; 159(12): 3560-70. [DOI:10.1016/j.envpol.2011.08.008]
100. Chehregani A, Majde A, Moin M, et al. Increasing allergy potency of Zinnia pollen grains in polluted areas. Ecotoxicol Environ Saf 2004; 58(2): 267-72. [DOI:10.1016/j.ecoenv.2003.12.004]
101. Shahali Y, Pourpak Z, Moin M, et al. Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens. Journal of Physics: Conference Series 2009; 151(1): 012027. [DOI:10.1088/1742-6596/151/1/012027]
102. Armentia A, Lombardero M, Callejo A, et al. Is Lolium pollen from an urban environment more allergenic than rural pollen?. Allergol Immunopathol (Madr) 2002; 30(4): 218-24. [DOI:10.1016/S0301-0546(02)79124-6]
103. Bartra J, Mullol J, Del Cuvillo A, et al. Air pollution and allergens. J Investig Allergol Clin Immunol 2007; 17 Suppl 2: 3-8. [Link]
104. Jianan X, Zhiyun O, Hua Z, et al. Allergenic pollen plants and their influential factors in urban areas. Acta Ecologica Sinica 2007; 27(9): 3820-7. [DOI:10.1016/S1872-2032(07)60082-1]
105. Rabinowitz PM, Slizovskiy IB, Lamers V, et al. Proximity to natural gas wells and reported health status: results of a household survey in Washington County, Pennsylvania. Environ Health Perspect 2015; 123(1): 21-6. [DOI:10.1289/ehp.1307732]
106. Ware JH, Spengler JD, Neas LM, et al. Respiratory and irritant health effects of ambient volatile organic compounds: the Kanawha County Health Study. Am J Epidemiol 1993; 137(12): 1287-301. [DOI:10.1093/oxfordjournals.aje.a116639]
107. Moraes AC, Ignotti E, Netto PA, et al. Wheezing in children and adolescents living next to a petrochemical plant in Rio Grande do Norte, Brazil. J Pediatr (Rio J) 2010; 86(4): 337-44. [DOI:10.2223/JPED.2020]
108. Tustin AW, Hirsch AG, Rasmussen SG, et al. Associations between unconventional natural gas development and nasal and sinus, migraine headache, and fatigue symptoms in Pennsylvania. Environ Health Perspect 2017; 125(2): 189-97. [DOI:10.1289/EHP281]
109. Li J, Lu Y, Shi Y, et al. Environmental pollution by persistent toxic substances and health risk in an industrial area of China. J Environ Sci (China) 2011; 23(8): 1359-67. [DOI:10.1016/S1001-0742(10)60554-2]
110. Hwang B-F, Jaakkola JJ, Lee Y-L, et al. Relation between air pollution and allergic rhinitis in Taiwanese schoolchildren. Respir Res 2006; 9; 7: 23. [DOI:10.1186/1465-9921-7-23]
111. Calderón‐Garcidueñas L, Mora‐Tiscareño A, Fordham LA, et al. Respiratory damage in children exposed to urban pollution. Pediatr Pulmonol 2003; 36(2): 148-61. [DOI:10.1002/ppul.10338]
112. Mannocci A, Pignalosa S, Saulle R, et al. Prevalence of major cardiovascular risk factors among oil and gas and energy company workers. Ann Ist Super Sanita2015; 51(2): 148-53. [Article]
113. Mannocci A, Pignalosa S, Nicosia V, et al. Cardiovascular Diseases Risk Factors in oil and gas workers: a ten years observational retrospective cohort. Ann Ig 2016; 28(2): 122-32. [Link]
114. Ragothaman A, Anderson WA. Air Quality Impacts of Petroleum Refining and Petrochemical Industries. Environments 2017; 4(3): 66. [DOI:10.3390/environments4030066]
115. Pulster EL. Assessment of Public Health Risks Associated with Petrochemical Emissions Surrounding an Oil Refinery [dissertation]. USA: University of South Florida., 2015. [Article]
116. Adu P, Pobee R, Awuah A, et al. Reduced Haematopoietic Output in Automobile Mechanics and Sprayers with Chronic Exposure to Petrochemicals: A Case-Control Study in Cape Coast, Ghana. J Environ Public Health 2018; 2018. [DOI:10.1155/2018/9563989]
117. Nabipour I. Book Review: Guide to Health Impact Assessment (HIA) in petroleum industry. Iran South Med J 2013; 16(1): 77-79. [Article]
118. Genc S, Zadeoglulari Z, Fuss SH, et al. The adverse effects of air pollution on the nervous system. Journal of toxicology 2012; 2012. [DOI:10.1155/2012/782462]
119. Kilburn KH, Warshaw RH. Hydrogen sulfide and reduced-sulfur gases adversely affect neurophysiological functions. Toxicol Ind Health 1995; 11(2): 185-97. [DOI:10.1177/074823379501100206]
120. Fujimoto VY, Bloom MS. Role of Environmental Factors and Gonadotoxin Exposure in Unexplained Female Infertility. In: Schattman GL, Esteves SC, Agarwal A, editors. Unexplained Infertility: Pathophysiology, Evaluation and Treatment. New York, NY: Springer New York, 2015, 161-73. [DOI:10.1007/978-1-4939-2140-9_15]
121. Kassotis CD, Tillitt DE, Lin C-H, et al. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 2016; 124(3): 256-64. [DOI:10.1289/ehp.1409535]
122. Kassotis CD, Iwanowicz LR, Akob DM, et al. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site. Sci Total Environ 2016; 557-558: 901-10. [DOI:10.1016/j.scitotenv.2016.03.113]
123. Axelsson G, Molin I. Outcome of pregnancy among women living near petrochemical industries in Sweden. Int J Epidemiol 1988; 17(2): 363-9. [DOI:10.1093/ije/17.2.363]
124. Xu X, Cho S-I, Sammel M, et al. Association of petrochemical exposure with spontaneous abortion. Occup Environ Med 1998; 55(1): 31-6. [DOI:10.1136/oem.55.1.31]
125. Yang C-Y, Chiu H-F, Tsai S-S, et al. Increased risk of preterm delivery in areas with cancer mortality problems from petrochemical complexes. Environ Res 2002; 89(3): 195-200. [DOI:10.1006/enrs.2002.4374]
126. Mehlman MA. Dangerous and Cancer-Causing Properties of Products and Chemicals in the Oil-Refining and Petrochemical Industries. Annals of the New York Academy of Sciences 1991; 643(1): 368-89. [DOI:10.1111/j.1749-6632.1991.tb24482.x]
127. D'Andrea MA, Reddy GK. Health effects of benzene exposure among children following a flaring incident at the British Petroleum refinery in Texas City. Pediatr Hematol Oncol 2014; 31(1): 1-10. [DOI:10.3109/08880018.2013.831511]
128. Zhou B, Zhao B. Analysis of intervention strategies for inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk based on a Monte Carlo population exposure assessment model. PloS one 2014; 9(1): e85676. [DOI:10.1371/journal.pone.0085676]
129. Marafi M, Stanislaus A. Options and processes for spent catalyst handling and utilization. J Hazard Mater 2003; 101(2): 123-32. [DOI:10.1016/S0304-3894(03)00145-6]
130. Pascal M, Pascal L, Bidondo M-L, et al. A review of the epidemiological methods used to investigate the health impacts of air pollution around major industrial areas. J Environ Public Health 2013; 2013. [DOI:10.1155/2013/737926]
131. Lin C-K, Hung H-Y, Christiani DC, et al. Lung cancer mortality of residents living near petrochemical industrial complexes: a meta-analysis. Environ Health 2017; 16(1): 101. [DOI:10.1186/s12940-017-0309-2]
132. Sans S, Elliott P, Kleinschmidt I, et al. Cancer incidence and mortality near the Baglan Bay petrochemical works, South Wales. Occup Environ Med 1995; 52(4): 217-24. [DOI:10.1136/oem.52.4.217]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.