[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ارسال مقاله :: تماس با ما ::
:: دوره 22، شماره 5 - ( دوماهنامه طب جنوب 1398 ) ::
جلد 22 شماره 5 صفحات 264-277 برگشت به فهرست نسخه ها
اثر آپوپتوتوزی دفروکسامین بر رده سرطانی سلول گلیال در شرایط برون تنی
مهتاب پورکمال‌زاده1 ، سید میثم ابطحی‌فروشانی 2
1- گروه میکروب‌شناسی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران
2- گروه میکروب‌شناسی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران ، sm.abtahi@urmia.ac.ir
چکیده:   (986 مشاهده)
زمینه: دفروکسامین به عنوان یک داروی شلات کننده آهن مطرح است. در مطالعات گذشته به اثرات مهارکننده رشد این دارو بر سلول‌های رده اریترولوکمی اشاره شده است. هدف مطالعه حاضر ارزیابی اثرات دفروکسامین بر روی سلول‌های B92 به عنوان مدلی از سرطان سلول‌های گلیال بوده است.
مواد و روش‌ها: در این مطالعه تجربی تعداد 104×6 سلول از رده B92 به مدت 24 ساعت با درصدهای متفاوت شامل: صفر،10، 50 و100 میکرومولار از دفروکسامین در حضور فریک کلرید (10 میکرومول بر لیتر) یا عدم حضور فریک کلرید تیمار شدند. تغییرات ریخت‌شناسی سلول‌های تیمار شده با استفاده از میکروسکوپ نوری معکوس در مقایسه با نمونه کنترل مورد ارزیابی قرار گرفت. اثرات مهار رشد و کشندگی دفروکسامین با استفاده از آزمون احیای (دی متیل تیازولدی فنیل تترازولیوم بروماید، MTT) و برداشت رنگ قرمز خنثی سنجیده شد. داده‌ها با استفاده از آزمون آماری کروسکال والیس تحلیل شدند. 05/0>P به عنوان سطح معنی‌دار در نظر گرفته شد.
یافته‌ها: اثرات مهاری دفروکسامین بر روی رشد رده سلولی B92 بعد از 24 ساعت مشخص شد به طوری که سلول‌ها در حضور دفروکسامین شروع به جمع شدن کردند. فریک کلرید (10 میکرومول بر لیتر) مانع این تغییرات ظاهری شد. همچنان نتایج مشخص کرد که دفروکسامین به طور معنی‌داری موجب مهار قدرت حیاتی و میزان زنده مانی سلول‌های B92 به صورت وابسته به دوز می‌شود. به علاوه، داده‌ها نشان داد که فریک کلرید مانع از بروز اثرات تیمار سلول‌های B92 با دفروکسامین می‌گردد.
نتیجه‌گیری: دفروکسامین در شرایط برون تنی دارای اثرات ضد تکثیری بر رده سلول گلیال B92 می‌باشد.
واژه‌های کلیدی: تکثیر سلولی، شلاته کننده آهن، گلیوما، سلول‌های B92
متن کامل [PDF 879 kb]   (208 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: دستگاه اعصاب
دریافت: 1398/3/26 | پذیرش: 1398/5/30 | انتشار: 1398/9/10
فهرست منابع
1. Rick JW, Shahin M, Chandra A, et al. Systemic Therapy for Brain Metastases. Crit Rev Oncol Hematol 2019; 142: 44-50. [DOI:10.1016/j.critrevonc.2019.07.012]
2. Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer cell 2017; 31(3): 326-41. [DOI:10.1016/j.ccell.2017.02.009]
3. Omuro A, DeAngelis LM. Glioblastoma and Other Malignant Gliomas: A Clinical Review. JAMA 2013; 310(17): 1842-50. [DOI:10.1001/jama.2013.280319]
4. Meyer M, Reimand J, Lan X, et al. Single Cell-Derived Clonal Analysis of Human Glioblastoma Links Functional and Genomic Heterogeneity. Proc Natl Acad Sci U S A 2015; 112(3): 851-6. [DOI:10.1073/pnas.1320611111]
5. Scott JG, Bauchet L, Fraum TJ, et al. Recur Sivepurtioning Analysis of Prognostic Factors for Glioblastoma Patients Aged 70 Years or Older. Cancer 2012; 118(22): 5595-600. [DOI:10.1002/cncr.27570]
6. Hervey-Jumper SL, Berger MS. Insular glioma surgery: an evolution of thought and practice. J Neurosurg 2019; 130(1):9-16. [DOI:10.3171/2018.10.JNS181519]
7. Molina-Marquez A, Vila M, Vigara J, et al. The Bacterial Phytoene Desaturase-Encoding Gene (CRTI) is an Efficient Selectable Marker for the Genetic Transformation of Eukaryotic Microalgae. Metabolites 2019; 9(3): 57-8. [DOI:10.3390/metabo9030049]
8. Schiffer D, Annovazzi L, Casalone C, et al. Glioblastoma: Microenvironment and Niche Concept. Cancers 2019; 11(1): 350-5. [DOI:10.3390/cancers11010005]
9. Suzuki K, Kataoka N, Inoue A, et al. High Saturation Magnetization and Soft Magnetic Properties of bcc Fe-Zr-B Alloys With Ultrafine Grain Structure. Mater Trans 1990; 31(8): 743-6. [DOI:10.2320/matertrans1989.31.743]
10. AlMawlawi D, Coombs N, Moskovits M. Magnetic Properties of Fe Deposited Into Anodic Aluminum Oxide Pores as a Function of Particle Size. Appl Phys 1991; 70(8): 4421-5. [DOI:10.1063/1.349125]
11. Haar CP, Hebbar P, Wallace GC, et al. Drug Resistance in Glioblastoma: A Mini Review. Neurochem Res 2012; 37(6): 1192-200. [DOI:10.1007/s11064-011-0701-1]
12. Sun JZ, Sun YC, Sun L. Synthesis of Surface Modified Fe3O4 Super Paramagnetic Nanoparticles for Ultra Sound Examination and Magnetic Resonance Imaging for Cancer Treatment. J Photochem Photobiol B 2019; 197: 111547. [DOI:10.1016/j.jphotobiol.2019.111547]
13. Flora SJ, Pachauri VJ. Chelation in Metal Intoxication. Int J Environ Res Public Health 2010; 7(7): 2745-88. [DOI:10.3390/ijerph7072745]
14. Yang Y, Xu Y, Su A, et al. Effects of Deferoxamine on Leukemia In Vitro and Its Related Mechanism. Med Sci Monit 2018; 24: 6735-41. [DOI:10.12659/MSM.910325]
15. Almeida C, Souza E, Oliveira G. Use of Tyrosine Kinase Inhibitors in the Treatment of Chronic Myeloid Leukemia (CML). Sci Elec Arch 2016; 9(5): 131-46.
16. Firouzbakhtkh S, Ghasemi K, Motamed N, et al. The Evaiuation of chalator therapy in reducing serum ferritin and improving Ejection fraction (EF%) in thalassemic patients. Iran South Med J 2015; 18 (2) :280-287.
17. khezri S, Salehhaggho L, Abtahi Foroushani SM. The Protective Role of Glycyrrhizin on Ethanol- Damaged B92 Glial Cells in Vitro. Armaghane danesh 2019; 24(3). (Persian)
18. Jamalidoust M, Ravanshad M, Namayandeh M, et al. Construction of AAV-rat-IL4 and Evaluation of its Modulating Effect on Abeta (1-42)-Induced Proinflammatory Cytokines in Primary Microglia and the B92 Cell Line by Quantitative PCR Assay. Jundishapur J Microbiol 2016; 9(3): 344-5. [DOI:10.5812/jjm.30444]
19. Yu Z, Chen ZB, Yang L, et al. Zinc Chelator TPEN Induces Pancreatic Cancer Cell Death Through Causing Oxidative Stress and Inhibiting Cell Autophagy. J Cell Physiol 2019; 12(6): 240-53. [DOI:10.1002/jcp.28670]
20. Ramadan S, Barlog M, Roach J, et al. Synthesis of TPEN Variants to Improve Cancer Cells Selective Killing Capacity. Bioorg Chem 2019; 87(4): 366-72. [DOI:10.1016/j.bioorg.2019.03.045]
21. Lopez J, Ramchandani D, Vahdat L. Copper Depletion as a Therapeutic Strategy in Cancer. Met Ions Life Sci 2019; 19(9): 212-6.
22. Wang Y, Yu L, Ding J, et al. Iron Metabolism in Cancer. Int J Mol Sci 2019; 20(1): 95. [DOI:10.3390/ijms20010095]
23. Saltman P. The Role of Chelation in Iron Metabolism. J Chem Educ 1965; 42(12): 682-7. [DOI:10.1021/ed042p682]
24. Dusek P, Schneider SA, Aaseth J. Iron Chelation in the Treatment of Neurodegenerative Diseases. J Trace Elem Med Biol 2016; 38: 81-92. [DOI:10.1016/j.jtemb.2016.03.010]
25. Kunos CA, Chu E, Beumer JH, et al. Phase I Trial of Daily Triapin in Combination with Cisplation Chemotheraphy for Advanced-Stage Malignancies. Cancer Chemother Pharmacol 2017; 79(1): 201-7. [DOI:10.1007/s00280-016-3200-x]
26. Bird ST, Swain RS, Tian F, et al. Effects of Deferasirox Dose and Decreasingserum Feritin Concentrations on Kindney Function in Paediatric Patients: An Analysis of Clinical Laboratory Data from Poole Clinical Studies. Lancet Child Adolesc Health 2019; 3(1): 15-22. [DOI:10.1016/S2352-4642(18)30335-3]
27. Kuang Y, Guo W, Ling J, et al. Iron-Dependent CDK1 Activity Promotes Lung Carcinogenesis Via Activation of the GP130/STAT3 Signaling Pathway. Cell Death Dis 2019; 10: 297. [DOI:10.1038/s41419-019-1528-y]
28. Yu X, Blanden A, Tsang AT, et al. Thiosemicarbazones Functioning As Zinc Metallochaperones to Reactivate Mutant p53. Mol Pharmacol 2017; 91(6): 567-75. [DOI:10.1124/mol.116.107409]
29. Saliba AN, Harb AR, Taher AT. Iron Chelation Therapy in Transfusion-Dependent Thalassemia Patients: Current Strategies and Future Directions. J Blood Med 2015; 6: 197-209. [DOI:10.2147/JBM.S72463]
30. Rassu G, Salis A, Porcu EP, et al. Composite Chitosan/Alginate Hydrogel for Controlled Release of Deferoxamine: A System to Potentially Treat Iron Dysregulation Diseases. Carbohydr Polym 2016; 136: 1338-47. [DOI:10.1016/j.carbpol.2015.10.048]
31. Li B, Esposito BP, Wang S, et al. Desferrioxamine-Caffeine Shows Improved Efficacy in Chelating Iron and Depleting Cancer Stem Cells. J Trace Elem Med Biol 2019; 52: 232-8. [DOI:10.1016/j.jtemb.2019.01.004]
32. Katsura Y, Ohara T, Noma K, et al. A Novel Combination Cancer Therapy with Iron Chelator Targeting Cancer Stem Cells via Suppressing Stemness. Cancers 2019; 11(2): 177. [DOI:10.3390/cancers11020177]
33. Lynn JV, Urlaub KM, Ranganathan K, et al. The Role of Deferoxamine in Irradiated Breast Reconstruction: A Study of Oncologic Safety. Plast Reconstr Surg 2019; 143(6): 1666-76. [DOI:10.1097/PRS.0000000000005647]
34. Moon JH, Jeong JK, Park SY. Deferoxamine Inhibits TRAIL-Mediated Apoptosis Via Regulation of Autophagy in Human Colon Cancer Cells. Oncol Rep 2015; 33(3): 1171-6. [DOI:10.3892/or.2014.3676]
35. Zhang W, Wu Y, Yan Q, et al. Deferoxamine Enhances Cell Migration and Invasion Through Promotion of HIF-1α Expression and Epithelial-Mesenchymal Transition in Colorectal Cancer. Oncol Rep 2014; 31(1): 111-6. [DOI:10.3892/or.2013.2828]
36. zarei L, abtahi foroshani M, Garajedagi A, et al. The Effects of Bifidobacterium Bifidum (BBCWF) on Proliferation of K562 Cell Line. J Fasa Univ Med Sci 2017; 7(1): 21-7. (Persian)
37. Shushtari N, Abtahi Froushani SM. Caffeine Augments The Instruction of Anti-Inflammatory Macrophages by The Conditioned Medium of Mesenchymal Stem Cells. Cell J 2017; 19(3): 415-24.
38. Umemura M, Kim JH, Aoyama H, et al. The Iron Chelating Agent, Deferoxamine Detoxifies Fe(Salen)-Induced Cytotoxicity. J Pharmacol Sci 2017; 134(4): 203-10. [DOI:10.1016/j.jphs.2017.07.002]
39. Rick JW, Shahin M, Chandra A, et al. Systemic Therapy for Brain Metastases. Crit Rev Oncol Hematol 2019; 142: 44-50. [DOI:10.1016/j.critrevonc.2019.07.012]
40. Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer cell 2017; 31(3): 326-41. [DOI:10.1016/j.ccell.2017.02.009]
41. Omuro A, DeAngelis LM. Glioblastoma and Other Malignant Gliomas: A Clinical Review. JAMA 2013; 310(17): 1842-50. [DOI:10.1001/jama.2013.280319]
42. Meyer M, Reimand J, Lan X, et al. Single Cell-Derived Clonal Analysis of Human Glioblastoma Links Functional and Genomic Heterogeneity. Proc Natl Acad Sci U S A 2015; 112(3): 851-6. [DOI:10.1073/pnas.1320611111]
43. Scott JG, Bauchet L, Fraum TJ, et al. Recur Sivepurtioning Analysis of Prognostic Factors for Glioblastoma Patients Aged 70 Years or Older. Cancer 2012; 118(22): 5595-600. [DOI:10.1002/cncr.27570]
44. Hervey-Jumper SL, Berger MS. Insular glioma surgery: an evolution of thought and practice. J Neurosurg 2019; 130(1):9-16. [DOI:10.3171/2018.10.JNS181519]
45. Molina-Marquez A, Vila M, Vigara J, et al. The Bacterial Phytoene Desaturase-Encoding Gene (CRTI) is an Efficient Selectable Marker for the Genetic Transformation of Eukaryotic Microalgae. Metabolites 2019; 9(3): 57-8. [DOI:10.3390/metabo9030049]
46. Schiffer D, Annovazzi L, Casalone C, et al. Glioblastoma: Microenvironment and Niche Concept. Cancers 2019; 11(1): 350-5. [DOI:10.3390/cancers11010005]
47. Suzuki K, Kataoka N, Inoue A, et al. High Saturation Magnetization and Soft Magnetic Properties of bcc Fe-Zr-B Alloys With Ultrafine Grain Structure. Mater Trans 1990; 31(8): 743-6. [DOI:10.2320/matertrans1989.31.743]
48. AlMawlawi D, Coombs N, Moskovits M. Magnetic Properties of Fe Deposited Into Anodic Aluminum Oxide Pores as a Function of Particle Size. Appl Phys 1991; 70(8): 4421-5. [DOI:10.1063/1.349125]
49. Haar CP, Hebbar P, Wallace GC, et al. Drug Resistance in Glioblastoma: A Mini Review. Neurochem Res 2012; 37(6): 1192-200. [DOI:10.1007/s11064-011-0701-1]
50. Sun JZ, Sun YC, Sun L. Synthesis of Surface Modified Fe3O4 Super Paramagnetic Nanoparticles for Ultra Sound Examination and Magnetic Resonance Imaging for Cancer Treatment. J Photochem Photobiol B 2019; 197: 111547. [DOI:10.1016/j.jphotobiol.2019.111547]
51. Flora SJ, Pachauri VJ. Chelation in Metal Intoxication. Int J Environ Res Public Health 2010; 7(7): 2745-88. [DOI:10.3390/ijerph7072745]
52. Yang Y, Xu Y, Su A, et al. Effects of Deferoxamine on Leukemia In Vitro and Its Related Mechanism. Med Sci Monit 2018; 24: 6735-41. [DOI:10.12659/MSM.910325]
53. Almeida C, Souza E, Oliveira G. Use of Tyrosine Kinase Inhibitors in the Treatment of Chronic Myeloid Leukemia (CML). Sci Elec Arch 2016; 9(5): 131-46.
54. Firouzbakhtkh S, Ghasemi K, Motamed N, et al. The Evaiuation of chalator therapy in reducing serum ferritin and improving Ejection fraction (EF%) in thalassemic patients. Iran South Med J 2015; 18 (2) :280-287.
55. khezri S, Salehhaggho L, Abtahi Foroushani SM. The Protective Role of Glycyrrhizin on Ethanol- Damaged B92 Glial Cells in Vitro. Armaghane danesh 2019; 24(3). (Persian)
56. Jamalidoust M, Ravanshad M, Namayandeh M, et al. Construction of AAV-rat-IL4 and Evaluation of its Modulating Effect on Abeta (1-42)-Induced Proinflammatory Cytokines in Primary Microglia and the B92 Cell Line by Quantitative PCR Assay. Jundishapur J Microbiol 2016; 9(3): 344-5. [DOI:10.5812/jjm.30444]
57. Yu Z, Chen ZB, Yang L, et al. Zinc Chelator TPEN Induces Pancreatic Cancer Cell Death Through Causing Oxidative Stress and Inhibiting Cell Autophagy. J Cell Physiol 2019; 12(6): 240-53. [DOI:10.1002/jcp.28670]
58. Ramadan S, Barlog M, Roach J, et al. Synthesis of TPEN Variants to Improve Cancer Cells Selective Killing Capacity. Bioorg Chem 2019; 87(4): 366-72. [DOI:10.1016/j.bioorg.2019.03.045]
59. Lopez J, Ramchandani D, Vahdat L. Copper Depletion as a Therapeutic Strategy in Cancer. Met Ions Life Sci 2019; 19(9): 212-6.
60. Wang Y, Yu L, Ding J, et al. Iron Metabolism in Cancer. Int J Mol Sci 2019; 20(1): 95. [DOI:10.3390/ijms20010095]
61. Saltman P. The Role of Chelation in Iron Metabolism. J Chem Educ 1965; 42(12): 682-7. [DOI:10.1021/ed042p682]
62. Dusek P, Schneider SA, Aaseth J. Iron Chelation in the Treatment of Neurodegenerative Diseases. J Trace Elem Med Biol 2016; 38: 81-92. [DOI:10.1016/j.jtemb.2016.03.010]
63. Kunos CA, Chu E, Beumer JH, et al. Phase I Trial of Daily Triapin in Combination with Cisplation Chemotheraphy for Advanced-Stage Malignancies. Cancer Chemother Pharmacol 2017; 79(1): 201-7. [DOI:10.1007/s00280-016-3200-x]
64. Bird ST, Swain RS, Tian F, et al. Effects of Deferasirox Dose and Decreasingserum Feritin Concentrations on Kindney Function in Paediatric Patients: An Analysis of Clinical Laboratory Data from Poole Clinical Studies. Lancet Child Adolesc Health 2019; 3(1): 15-22. [DOI:10.1016/S2352-4642(18)30335-3]
65. Kuang Y, Guo W, Ling J, et al. Iron-Dependent CDK1 Activity Promotes Lung Carcinogenesis Via Activation of the GP130/STAT3 Signaling Pathway. Cell Death Dis 2019; 10: 297. [DOI:10.1038/s41419-019-1528-y]
66. Yu X, Blanden A, Tsang AT, et al. Thiosemicarbazones Functioning As Zinc Metallochaperones to Reactivate Mutant p53. Mol Pharmacol 2017; 91(6): 567-75. [DOI:10.1124/mol.116.107409]
67. Saliba AN, Harb AR, Taher AT. Iron Chelation Therapy in Transfusion-Dependent Thalassemia Patients: Current Strategies and Future Directions. J Blood Med 2015; 6: 197-209. [DOI:10.2147/JBM.S72463]
68. Rassu G, Salis A, Porcu EP, et al. Composite Chitosan/Alginate Hydrogel for Controlled Release of Deferoxamine: A System to Potentially Treat Iron Dysregulation Diseases. Carbohydr Polym 2016; 136: 1338-47. [DOI:10.1016/j.carbpol.2015.10.048]
69. Li B, Esposito BP, Wang S, et al. Desferrioxamine-Caffeine Shows Improved Efficacy in Chelating Iron and Depleting Cancer Stem Cells. J Trace Elem Med Biol 2019; 52: 232-8. [DOI:10.1016/j.jtemb.2019.01.004]
70. Katsura Y, Ohara T, Noma K, et al. A Novel Combination Cancer Therapy with Iron Chelator Targeting Cancer Stem Cells via Suppressing Stemness. Cancers 2019; 11(2): 177. [DOI:10.3390/cancers11020177]
71. Lynn JV, Urlaub KM, Ranganathan K, et al. The Role of Deferoxamine in Irradiated Breast Reconstruction: A Study of Oncologic Safety. Plast Reconstr Surg 2019; 143(6): 1666-76. [DOI:10.1097/PRS.0000000000005647]
72. Moon JH, Jeong JK, Park SY. Deferoxamine Inhibits TRAIL-Mediated Apoptosis Via Regulation of Autophagy in Human Colon Cancer Cells. Oncol Rep 2015; 33(3): 1171-6. [DOI:10.3892/or.2014.3676]
73. Zhang W, Wu Y, Yan Q, et al. Deferoxamine Enhances Cell Migration and Invasion Through Promotion of HIF-1α Expression and Epithelial-Mesenchymal Transition in Colorectal Cancer. Oncol Rep 2014; 31(1): 111-6. [DOI:10.3892/or.2013.2828]
74. zarei L, abtahi foroshani M, Garajedagi A, et al. The Effects of Bifidobacterium Bifidum (BBCWF) on Proliferation of K562 Cell Line. J Fasa Univ Med Sci 2017; 7(1): 21-7. (Persian)
75. Shushtari N, Abtahi Froushani SM. Caffeine Augments The Instruction of Anti-Inflammatory Macrophages by The Conditioned Medium of Mesenchymal Stem Cells. Cell J 2017; 19(3): 415-24.
76. Umemura M, Kim JH, Aoyama H, et al. The Iron Chelating Agent, Deferoxamine Detoxifies Fe(Salen)-Induced Cytotoxicity. J Pharmacol Sci 2017; 134(4): 203-10. [DOI:10.1016/j.jphs.2017.07.002]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourkamalzadeh M, Abtahi froushani S M. In-vitro Apoptotic Effects of Deferoxamine on the Glioblastoma Cell Line. Iran South Med J. 2019; 22 (5) :264-277
URL: http://ismj.bpums.ac.ir/article-1-1171-fa.html

پورکمال‌زاده مهتاب، ابطحی‌فروشانی سید میثم. اثر آپوپتوتوزی دفروکسامین بر رده سرطانی سلول گلیال در شرایط برون تنی. طب جنوب. 1398; 22 (5) :264-277

URL: http://ismj.bpums.ac.ir/article-1-1171-fa.html



دوره 22، شماره 5 - ( دوماهنامه طب جنوب 1398 ) برگشت به فهرست نسخه ها
دانشگاه علوم پزشکی بوشهر، طب جنوب ISMJ

Iranian South Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License which allows users to read,
copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly

Copyright © 2017, Iranian South Medical Journal| All Rights Reserved

Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4218