1. Port M, Herodin F, Valente M, et al. MicroRNA expression for early prediction of late occurring hematologic acute radiation syndrome in baboons. PLoS ONE 2016; 11(11): e0165307. [
DOI]
2. Kazzi Z, Buzzell J, Bertelli L, et al. Emergency department management of patients internally contaminated with radioactive material. Emerg Med Clin North Am 2015; 33(1): 179–196. [
DOI]
3. Orton C, Borras C, Carlson D. Radiation biology for radiation therapy physicists. Med Phys 2014; 41(6): 532. [
DOI]
4. Hancock SL, Cox RS, McDougall IR. Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med 1991; 325(9): 599-605. [
DOI]
5. Rubin P, Casarett GW. Clinical radiation pathology as applied to curative radiotherapy. Cancer 1968; 22(4): 767–780. [
DOI]
6. Dilas LT, Bajkin I, Icin T, et al. Iodine and thyroid gland with or without nuclear catastrophe. Med Pregl 2012; 65(11-12): 489–495. [
DOI]
7. Duffy BJ Jr, Fitzgerald PJ. Thyroid cancer in childhood and adolescence; a report on 28 cases. Cancer 1950; 3(6): 1018-32. [
DOI]
8. Socolow EL, Hashizume A, Neriishi S, et al. Thyroid carcinoma in man after exposure to ionizing radiation. A summary of the findings in Hiroshima and Nagasaki. N Engl J Med 1963; 268: 406-10. [
DOI]
9. Conard RA, Dobyns BM, Sutow WW. Thyroid neoplasia as late effect of exposure to radioactive iodine in fallout. JAMA 1970; 214(2): 316-24. [
PubMed]
10. Iglesias ML, Schmidt A, Ghuzlan AA, et al. Radiation exposure and thyroid cancer: a review. Arch Endocrinol Metab 2017; 61(2): 180-7. [
DOI]
11. Schneider AB, Ron E, Lubin J, et al. Dose-response relationships for radiation-induced thyroid cancer and thyroid nodules: evidence for the prolonged effects of radiation on the thyroid. J Clin Endocrinol Metab 1993; 77(2): 362-9. [
DOI]
12. Naing S, Collins BJ, Schneider AB. Clinical behavior of radiation-induced thyroid cancer: factors related to recurrence. Thyroid 2009; 19(5): 479-85. [
DOI]
13. Furukawa K, Preston D, Funamoto S, et al. Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer 2013; 132(5): 1222-6. [
DOI]
14. Dobyns BM, Hyrmer BA. The surgical management of benign and malignant thyroid neoplasms in Marshall Islanders exposed to hydrogen bomb fallout. World J Surg 1992; 16(1): 126-39. [
DOI]
15. Tronko MD, Howe GR, Bogdanova TI, et al. A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: thyroid cancer in Ukraine detected during first screening. J Natl Cancer Inst 2006; 98(13): 897-903. [
DOI]
16. Zablotska LB, Bogdanova TI, Ron E, et al. A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: dose-response analysis of thyroid follicular adenomas detected during first screening in Ukraine (1998-2000). Am J Epidemiol 2008; 167(3): 305-12. [
DOI]
17. Shibata Y, Yamashita S, Masyakin VB, et al. 15 years after Chernobyl: new evidence of thyroid cancer. Lancet 2001; 358(9297): 1965-6. [
DOI]
18. Ivanov VK, Gorski AI, Tsyb AF, et al. Radiation-epidemiological studies of thyroid cancerincidence among children and adolescents in the Bryansk oblast of Russia after the Chernobyl accident (1991-2001 follow-up period). Radiat Environ Biophys 2006; 45(1): 9-16. [
DOI]
19. Ivanov VK, Kashcheev VV, Chekin SY, et al. Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident (estimation of radiation risks, 1991- 2008 follow-up period). Radiat Prot Dosimetry 2012; 151(3): 489-99. [
DOI]
20. Ozasa K, Shimizu Y, Suyama A, et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 2012; 177(3): 229–243. [
DOI]
21. Cardis E, Kesminiene A, Ivanov V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 2005; 97(10): 724-32. [
DOI]
22. Veiga LH, Holmberg E, Anderson H, et al. Thyroid cancer after childhood exposure to external radiation: an updated pooled analysis of 12 studies. Radiat Res 2016; 185(5): 473-84. [
DOI]
23. Sigurdson AJ, Ronckers CM, Mertens AC, et al. Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case-control study. Lancet 2005; 365(9476): 2014-23. [
DOI]
24. Hall P, Holm LE. Radiation-associated thyroid cancer--facts and fiction. Acta Oncol 1998; 37(4): 325-30. [
DOI]
25. Ohira T, Ohtsuru A, Midorikawa S, et al. External Radiation Dose, Obesity, and Risk of Childhood Thyroid Cancer After the Fukushima Daiichi Nuclear Power Plant Accident: The Fukushima Health Management Survey. Epidemiology 2019; 30(6): 853-860. [
DOI]
26. Reiners C, Demidchik YE, Drozd VM, et al. Thyroid cancer in infants and adolescents after Chernobyl. Minerva Endocrinol 2008; 33(4): 381-95. [
PubMed]
27. Veiga LH, Lubin JH, Anderson H, et al. A pooled analysis of thyroid cancer incidence following radiotherapy for childhood cancer. Radiat Res 2012; 178(4): 365-76. [
DOI]
28. Boice JD Jr. Thyroid disease 60 years after Hiroshima and 20 years after Chernobyl. JAMA 2006; 295(9): 1060-2. [
DOI]
29. Nabipour I, Assadi M. Use of Stable Iodine in Nuclear Emergencies. Bushehr: Bushehr university of medical science pub, 2010, 110. (Persian) [
Article]
30. Ron E, Lubin JH, Shore RE, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. 1995. Radiat Res 2012; 178(2): AV43-60. [
DOI]
31. Matsuu-Matsuyama M, Shichijo K, Matsuda K, et al. Age-dependent effects on radiation-induced carcinogenesis in the rat thyroid. Sci Rep 2021; 11(1): 19096. [
DOI]
32. Drozdovitch V. Radiation Exposure to the Thyroid After the Chernobyl Accident. Front Endocrinol (Lausanne) 2021; 11: 569041. [
DOI]
33. de Vathaire F, Hardiman C, Shamsaldin A, et al. Thyroid carcinomas after irradiation for a first cancer during childhood. Arch Intern Med 1999; 159(22): 2713-9. [
DOI]
34. Levin RJ, De Simone NF, Slotkin JF, et al. Incidence of thyroid cancer surrounding Three Mile Island nuclear facility: the 30-year followup. Laryngoscope 2013; 123(8): 2064-71. [
DOI]
35. Bollaerts K, Fierens S, Van Bladel L, et al. Thyroid cancer incidence in the vicinity of nuclear sites in Belgium, 2000-2008. Thyroid 2014; 24(5): 906-17. [
DOI]
36. Kim J, Bang Y, Lee WJ. Living near nuclear power plants and thyroid cancer risk: A systematic review and meta-analysis. Environ Int 2016; 87: 42-8. [
DOI]
37. López-Abente G, Aragonés N, Pollán M. Solid-tumor mortality in the vicinity of uranium cycle facilities and nuclear power plants in Spain. Environ Health Perspect 2001; 109(7): 721-9. [
DOI]
38. Kim BK, Kim JM, Kim MH, et al. Increased risk of thyroid cancer in female residents nearby nuclear power plants in Korea: was it due to detection bias? Ann Occup Environ Med 2018; 30: 21. [
DOI]
39. de Vathaire F, Haddy N, Allodji RS, et al. Thyroid Radiation Dose and Other Risk Factors of Thyroid Carcinoma Following Childhood Cancer. J Clin Endocrinol Metab 2015; 100(11): 4282-90. [
DOI]
40. Sinnott B, Ron E, Schneider AB. Exposing the thyroid to radiation:a review of its current extent, risks, and implications. Endocr Rev 2010; 31(5): 756-73. [
DOI]
41. Hancock SL, Cox RS, McDougall IR. Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med 1991; 325(9): 599-605. [
DOI]
42. Imaizumi M, Usa T, Tominaga T, et al. Radiation dose-response relationships forthyroid nodules and autoimmune thyroid diseases in Hiroshima and Nagasaki atomic bomb survivors 55-58 years after radiation exposure. JAMA 2006; 295(9): 1011-22. [
DOI]
43. Tronko M, Bogdanova T, Voskoboynyk L, et al. Radiation induced thyroid cancer: fundamental and applied aspects. Exp Oncol 2010; 32(3): 200-4. [
PubMed]
44. Islam MT. Radiation interactions with biological systems. Int J Radiat Biol 2017; 93(5): 487-493. [
DOI]
45. Ermakova OV, Pavlov AV, Korableva TV. [Cytogenetic effects in follicular epithelium of thyroid gland under prolonged exposure to gamma-radiation at low-doses]. Radiats Biol Radioecol 2008; 48(2): 160-6. [
PubMed]
46. Christov, K. Effect of irradiation on the proliferation kinetics of thyroid follicular cells in infant rats. Exp Pathol 1982; 21(2): 117–122. [
DOI]
47. Russo E, Guerra A, Marotta V, et al. Radioiodide induces apoptosis in human thyroid tissue in culture. Endocrine 2013; 44(3): 729-34. [
DOI]
48. Blasko I, Sztankay A, Lukas P, et al. Decreased thyroid peroxidase expression in cultured thyrocytes after external gamma irradiation. Exp Clin Endocrinol Diabetes 2000; 108(2): 138-41. [
DOI]
49. Eheman CR, Garbe P, Tuttle RM. Autoimmune thyroid disease associated with environmental thyroidal irradiation. Thyroid 2003; 13(5): 453-64. [
DOI]
50. Ameziane-El-Hassani R, Talbot M, de Souza Dos Santos MC, et al. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc Natl Acad Sci U S A 2015; 112(16): 5051-6. [
DOI]
51. Hara T, Namba H, Yang TT, et al. Ionizing radiation activates c-Jun NH2-terminal kinase (JNK/SAPK) via a PKC-dependent pathway in human thyroid cells. Biochem Biophys Res Commun 1998; 244(1): 41-4. [
DOI]
52. Caudill CM, Zhu Z, Ciampi R, et al. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J Clin Endocrinol Metab 2005; 90(4): 2364–2369. [
DOI]
53. Albi E, Cataldi S, Lazzarini A, et al. Radiation and Thyroid Cancer. Int J Mol Sci 2017; 18(5): 911. [
DOI]
54. Hamatani K, Eguchi H, Ito R, et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res 2008; 68(17): 7176-82. [
DOI]
55. Suzuki K, Saenko V, Yamashita S, et al. Radiation-Induced Thyroid Cancers: Overview of Molecular Signatures. Cancers (Basel) 2019; 11(9): 1290. [
DOI]
56. Romei C, Elisei R. RET/PTC Translocations and Clinico-Pathological Features in Human Papillary Thyroid Carcinoma. Front Endocrinol (Lausanne) 2012; 3: 54. [
DOI]
57. Zitzelsberger H, Unger K. DNA copy number alterations in radiation-induced thyroid cancer. Clin Oncol (R Coll Radiol) 2011; 23(4): 289-96. [
DOI]
58. Oishi N, Kondo T, Nakazawa T, et al. Frequent BRAF V600E and absence of TERT promoter mutations characterize sporadic pediatric papillary thyroid carcinomas in Japan. Endocr Pathol 2017; 28(2): 103-111. [
DOI]
59. Leeman-Neill RJ, Brenner AV, Little MP, et al. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer 2013; 119(10): 1792-9. [
DOI]
60. Takahashi K, Eguchi H, Arihiro K, et al. The presence of BRAF point mutation in adult papillary thyroid carcinomas from atomic bomb survivors correlates with radiation dose. Mol Carcinog 2007; 46(3): 242–248. [
DOI]
61. Ricarte-Filho JC, Li S, Garcia-Rendueles ME, et al. Identifification of kinase fusion oncogenes in Post-Chernobyl radiation-induced thyroidcancers. J Clin Invest 2013; 123(11): 4935–4944. [
DOI]
62. Leeman-Neill RJ, Kelly LM, Liu P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014; 120(6): 799-807. [
DOI]
63. Arndt A, Steinestel K, Rump A, et al. Anaplastic lymphoma kinase (ALK) gene rearrangements in radiation-related human papillary thyroid carcinoma after the Chernobyl accident. J Pathol Clin Res 2018; 4(3): 175-183. [
DOI]
64. Efanov AA, Brenner AV, Bogdanova TI, et al. Investigation of the relationship between radiation dose and gene mutations and fusions in Post-Chernobyl thyroid cancer. J Natl Cancer Inst 2018; 110(4): 371-378. [
DOI]
65. Hamatani K, Mukai M, Takahashi K, et al. Rearranged anaplastic lymphoma kinase (ALK) gene in adult-onset papillary thyroid cancer amongst atomic bomb survivors. Thyroid 2012; 22(11): 1153-9. [
DOI]
66. Hamatani K, Eguchi H, Koyama K, et al. A novel RET rearrangement (ACBD5/RET) by pericentric inversion, inv(10) (p12.1;q11.2), in papillary thyroid cancer from an atomic bomb survivor exposed to high-dose radiation. Oncol Rep 2014; 32(5): 1809-14. [
DOI]
67. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011; 7(10): 569-80. [
DOI]
68. Santoro M, Carlomagno F. Oncogenic rearrangements driving ionizing radiation-associated human cancer. J Clin Invest 2013; 123(11): 4566-8. [
DOI]
69. Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol 2013; 5(12): a009233. [
DOI]
70. Nikiforova MN, Tseng GC, Steward D, et al. MicroRNA expression profiling of thyroid tumors: Biological signifificance and diagnostic utility. J Clin Endocrinol Metab 2008; 93(5): 1600-8. [
DOI]
71. He L, He X, Lim L, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134. [
DOI]
72. Nikiforova MN, Gandhi M, Kelly L, et al. MicroRNA dysregulation in human thyroid cells following exposure to ionizing radiation. Thyroid 2011; 21(3): 261-6. [
DOI]
73. Sautin Y, Takamura N, Shklyaev S, et al. Ceramide-induced apoptosis of human thyroid cancer cells resistant to apoptosis by irradiation. Thyroid 2000; 10(9): 733-40. [
DOI]
74. Fujiwara S, Sposto R, Shiraki M, et al. Levels of parathyroid hormone and calcitonin in serum among atomic bomb survivors. Radiat Res 1994; 137(1): 96-103. [
PubMed]
75. Colaço SM, Si M, Reiff E, et al. Hyperparathyroidism after radioactive iodine therapy. Am J Surg 2007; 194(3): 323-7. [
DOI]
76. Nauman J, Wolff J. Iodide prophylaxis in Poland after the Chernobyl reactor accident: benefits and risks. Am J Med 1993; 94(5): 524-32. [
DOI]
77. International Atomic Energy Agency (IAEA). Intervention Criteria in a Nuclear or Radiation Emergency. IAEA Safety Series 1994; 109: 117. [
Article]
78. Principles for Intervention for Protection of the Public in a Radiological Emergency. A report of a Task Group of Committee 4 of the International Commission on Radiological Protection. Ann ICRP 1991; 22(4): 1-39. [
Article]