1. Sen CK. Human wound and its burden. updated 2020 compendium of estimates. Adv wound care (New Rochelle) 2021; 10(5): 281-92. [
DOI]
2. Ahangar P, Woodward M, Cowin AJ. Advanced wound therapies. WPR 2018; 26(2): 58-68. [
Article]
3. Kalpana VN, Kataru BA, Sravani N, et al. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano 2018; 3: 48-55. [
DOI]
4. Jin L, Zhou F, Wu S, et al. Development of novel segmented-pie microfibers from coppercarbon nanoparticles and polyamide composite for antimicrobial textiles application. Text Res J 2022; 92(1-2): 3-14. [
DOI]
5. Coradi M, Zanetti M, Valério A, et al. Production of antimicrobial textiles by cotton fabric functionalization and pectinolytic enzyme immobilization. Mater chem phys 2018; 208: 28-34. [
DOI]
6. Weinberg SE, Villedieu A, Bagdasarian N, et al. Control and management of multidrug resistant Acinetobacter baumannii: A review of the evidence and proposal of novel approaches. Infect Prev Pract 2020; 2(3): 100077. [
DOI]
7. Vereshchagin AN, Frolov NA, Egorova KS, et al. Quaternary ammonium compounds (QACs) and ionic liquids (ILs) as biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci 2021; 22(13): 6793. [
DOI]
8. Amini SM. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater Sci Eng C Mater Biol Appl 2019; 103: 109809. [
DOI]
9. Li J, Hu S, Jian W, et al. Plant antimicrobial peptides: structures, functions, and applications. Bot Stud 2021; 62(1): 5. [
DOI]
10. Srivastava S, Dashora K, Ameta KL, et al. Cysteine‐rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother Res 2021; 35(1): 256-77. [
DOI]
11. Tang SS, Prodhan ZH, Biswas SK, et al. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 2018; 154: 94-105. [
DOI]
12. Nisar P, Ali N, Rahman L, et al. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. J Biol Inorg Chem 2019; 24(7): 929-41. [
DOI]
13. Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-based nanoparticles as antimicrobial agents: An Overview. Nanomaterials (Basel) 2020; 10(2): 292. [
DOI]
14. Tortella G, Rubilar O, Fincheira P, et al. Bactericidal and virucidal activities of biogenic metal-based nanoparticles: Advances and Perspectives. Antibiotics (Basel) 2021; 10(7): 783. [
DOI]
15. Rojas B, Soto N, Villalba M, et al. Antibacterial activity of copper nanoparticles (Cunps) against a resistant calcium hydroxide multispecies endodontic biofilm. Nanomaterials (Basel) 2021; 11(9): 2254. [
DOI]
16. Maleki Dizaj S, Sharifi S, Jahangiri A. Electrospun nanofibers as versatile platform in antimicrobial delivery: current state and perspectives. Pharm Dev Technol 2019; 24(10): 1187-99. [
DOI]
17. Hong J, Yeo M, Yang GH, et al. Cell-electrospinning and its application for tissue engineering. Int J Mol Sci 2019; 20(24): 6208. [
DOI]
18. Li H, Chen X, Lu W, et al. Application of electrospinning in antibacterial field. Nanomaterials (Basel) 2021; 11(7): 1822. [
DOI]
19. Akbari Z, Ansari I, Karimi Z, et al. Repeated Daily Normobaric Hyperoxia: A Non-Pharmacological Strategy Against Gentamicin-Induced Nephrotoxicity. Iran South Med J 2023; 26(2): 77-91. [
Article]
20. Aavani F, Khorshidi S, Karkhaneh A. A concise review on drug-loaded electrospun nanofibres as promising wound dressings. J Med Eng Technol 2019; 43(1): 38-47. [
DOI]
21. Singh YP, Dasgupta S, Nayar S, et al. Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. J Biomater Sci Polym Ed 2020; 31(6): 781-803. [
DOI]
22. Eskitoros-Togay ŞM, Bulbul YE, Tort S, et al. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm 2019; 565: 83-94. [
DOI]
23. Ibrahim HM, Klingner A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym Test 2020; 90(8): 106647. [
DOI]
24. Liu Z, Ramakrishna S, Liu X. Electrospinning and emerging healthcare and medicine possibilities. APL Bioeng 2020; 4(3): 030901. [
DOI]
25. Bhattarai RS, Bachu RD, Boddu SHS, et al. Biomedical applications of electrospun nanofibers: Drug and Nanoparticle Delivery. Pharmaceutics 2018; 11(1): 5. [
DOI]
26. Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery application: A review. J Control Release 2021; 334: 463-84. [
DOI]
27. Yan B, Zhang Y, Li Z, et al. Electrospun nanofibrous membrane for biomedical application. SN Appl Sci 2022; 4(6): 172. [
DOI]
28. Moradi F, Mohammadi S, Kakian F, et al. Investigating the Prevalence and Clinical Significance of Helicobacter pylori in Hospital-ized Patients Undergoing Endoscopy in Namazi Hospital, Shiraz. Iran South Med J 2023; 26(2): 102-113. [
Article]
29. Niazi AA, Nemati A, Alavi Naeini R, et al. Comparing the Serum Level of Vascular Endothelial Growth Factor (VEGF) in Patients with Active Pulmonary Tuberculosis and the Control Group: A Case Control Study. Iran South Med J 2023; 26(2): 92-101. [
Article]
30. Mao Y, Zhang Z, Zeng W, et al. A clinical study of efficacy of polyglycolic acid patch in surgery for pneumothorax: a systematic review and meta-analysis. J Cardiothorac Surg 2020; 15(1): 117. [
DOI]
31. Alavi M, Rai M. Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev Anti Infect Ther 2019; 17(6): 419-28. [
DOI]
32. Sepahvand R, Adeli M, Astinchap B, et al. New nanocomposites containing metal nanoparticles, carbon nanotube and polymer. J Nanopart Res 2008; 10(8): 1309-18. [
DOI]
33. Preethi S, Abarna K, Nithyasri M, et al. Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. Int J Biol Macromol 2020; 164: 2779-87. [
DOI]
34. Sadeghianmaryan A, Yazdanpanah Z, Soltani YA, et al. Curcumin‐loaded electrospun polycaprolactone/montmorillonite nanocomposite: Wound Dressing Application with Anti‐Bacterial and Low Cell Toxicity Properties. J Biomater Sci Polym Ed 2020; 31(2): 169-87. [
DOI]
35. Thomas R, Soumya KR, Mathew J, et al. Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Appl Biochem Biotechnol 2015; 176(8): 2213-24. [
DOI]
36. Sharaf SS, El-Shafei AM, Refaie R, et al. Antibacterial and wound healing properties of cellulose acetate electrospun nanofibers loaded with bioactive glass nanoparticles; in-vivo study. Cellulose 2022; 29(8): 4565-77. [
DOI]
37. Ali IH, Ouf A, Elshishiny F, et al. Antimicrobial and wound-healing activities of graphene-reinforced electrospun chitosan/gelatin nanofibrous nanocomposite scaffolds. ACS omega 2022; 7(2): 1838-50. [
DOI]
38. Ahmadian S, Ghorbani M, Mahmoodzadeh F. Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. Int J Biol Macromol 2020; 162: 1555-65. [
DOI]
39. Sethuram L, Thomas J, Mukherjee A, et al. Eugenol micro-emulsion reinforced with silver nanocomposite electrospun mats for wound dressing strategies. Adv Mater 2021; 2(9): 2971-88. [
Article]
40. Kohsari I, Shariatinia Z, Pourmortazavi SM. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. Int J Biol Macromol 2016; 91: 778-88. [
DOI]