1. Navabi P, Bitarf S, Rastegar MH, et al. Factors Af-fecting the Prevalence and Survival of Patients with Primary and Metastatic Brain Tumors. Iran South Med J 2025; 27(4): 258-266. [
DOI]
2. Weller M, Wen PY, Chang SM, et al. Glioma (Pri-mer). Nature Reviews: Disease Primers 2024; 10(1): 33. [
DOI]
3. Walsh KM, Ohgaki H, Wrensch MR. Epidemiology. Handb Clin Neurol 2016; 134: 3-18. [
DOI]
4. Gallego O. Nonsurgical treatment of recurrent gli-oblastoma. Curr Oncol 2015; 22(4): e273-281. [
DOI]
5. Vidyadharan S, Prabhakar Rao BVVSN, Perumal Y, et al. Deep Learning Classifies Low- and High-Grade Glioma Patients with High Accuracy, Sensi-tivity, and Specificity Based on Their Brain White Matter Networks Derived from Diffusion Tensor Imaging. Diagnostics (Basel) 2022; 12(12): 3216. [
DOI]
6. Lim A, Weir P, O’Brien T, et al. Complex visual hal-lucinations as a presentation of temporal low-grade glioma. J Clin Neurosci 2011; 18(1): 157-159. [
DOI]
7. Smoll NR, Brady Z, Scurrah KJ, et al. Computed tomography scan radiation and brain cancer inci-dence. Neuro oncol 2023; 25(7): 1368-1376 [
DOI]
8. Adel Fahmideh M, Schwartzbaum J, Frumento P, et al. Association between DNA repair gene polymor-phisms and risk of glioma: a systematic review and meta-analysis. Neuro oncol 2014; 16(6): 807-814. [
DOI]
9. Chung C, Buczkowicz P. Recent advances in the molecular genetics of glioma. Front Genet 2024; 15: 1435186. [
DOI]
10. Noor H, Briggs NE, McDonald KL,et al. TP53 muta-tion is a prognostic factor in lower grade glioma and may influence chemotherapy efficacy. Can-cers (Basel) 2021; 13(21): 5362. [
DOI]
11. Han F, Hu R, Yang H, et al. PTEN gene mutations correlate to poor prognosis in glioma patients: a meta-analysis. Onco Targets Ther 2016; 9 : 3485-3492. [
DOI]
12. Lucke-Wold B, Rangwala BS, Shafique MA, et al. Focus on current and emerging treatment options for glioma: a comprehensive review. World J Clin Oncol 2024; 15(4): 482-495. [
DOI]
13. Reynolds CR, Tran S, Jain M, et al. Neoantigen cancer vaccines: generation, optimization, and therapeutic targeting strategies. Vaccines (Basel) 2022; 10(2): 196. [
DOI]
14. Xie N, Shen G, Gao W, et al. Neoantigens: promis-ing targets for cancer therapy. Signal Transduct Target Ther 2023; 8(1): 9. [
DOI]
15. Zhang T, Kurban E, Wang Z. Neoantigens: the novel precision cancer immunotherapy. Biologics 2023; 3(4): 321-334. [
DOI]
16. Fang X, Guo Z, Liang J, et al. Neoantigens and their potential applications in tumor immunotherapy. Oncol Lett 2022; 23(3): 88. [
DOI]
17. Alqahtani SM, Altharawi A, Alabbas A, et al. Sys-tem biology approach to identify the novel bi-omarkers in glioblastoma multiforme tumors by using computational analysis. Front Pharmacol 2024; 15: 1364138. [
DOI]
18. Khorshidi M, Manoochehri H, AAlikhani M, et al. Identification of Key Hub Genes Associated with Breast Cancer Stem Cells to Overcome Therapy Resistance. Iran South Med J 2025; 27(5): 394-408. [
DOI]
19. Li C, Tang Z, Zhang W, et al. GEPIA2021: integrat-ing multiple deconvolution-based analysis into GEPIA. Nucleic acids research. 2021;49(W1):W242-W6. [
DOI]
20. Mudunuri U, Che A, Yi M, et al. bioDBnet: the bio-logical database network. Bioinformatics 2009; 25(4): 555-556. [
DOI]
21. Stelzer G, Rosen N, Plaschkes I, et al. The Gene-Cards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioin-formatic 2016; 54: 1.30.1-1.30.33. [
DOI]
22. De Bruijn I, Kundra R, Mastrogiacomo B, et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE bi-opharma collaborative in cBioPortal. Cancer Res 2023; 83(23): 3861-3867. [
DOI]
23. Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022; 25: 18-27. [
DOI]
24. Bowman RL, Wang Q, Carro A, et al. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro oncol 2017; 19(1): 139-141. [
DOI]
25. Verhaak RG, Hoadley KA, Purdom E, et al. Integrat-ed genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnor-malities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell 2010; 17(1): 98-110. [
DOI]
26. Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein–protein associ-ation networks and functional enrichment anal-yses for any sequenced genome of interest. Nucle-ic acids research 2023; 51(D1): D638-D646. [
DOI]
27. Aminoff MJ, Boller F, Bruyn G, et al. Handbook of clinical neurology: North-Holland Publishing Com-pany; 1968. [
Article]
28. Luo D, Chen W, Tian Y, et al. Serpin peptidase in-hibitor, clade A member 3 (SERPINA3), is overex-pressed in glioma and associated with poor prog-nosis in glioma patients. Onco Targets Ther 2017; 10: 2173-2181. [
DOI]
29. Wu S, Miao K, Wang L, et al. Bioinformatics analy-sis of C3 in brain low-grade gliomas as potential therapeutic target and promoting immune cell in-filtration. Med Oncol 2022; 39(2): 27. [
DOI]
30. Liu H, Wang J, Luo T, et al. Correlation between ITGB2 expression and clinical characterization of glioma and the prognostic significance of its methylation in low-grade glioma (LGG). Front En-docrinol (Lausanne) 2023; 13: 1106120. [
DOI]
31. Li Y, Dong X, Cai J, et al. SERPINA3 induced by as-troglia/microglia co-culture facilitates glioblasto-ma stem-like cell invasion. Oncol Lett 2018; 15(1): 285-291. [
DOI]
32. Li Q, Wan C, Zhang Z, et al. CTSC promoted the migration and invasion of glioma cells via activa-tion of STAT3/SERPINA3 axis. Gene 2024; 893: 147948. [
DOI]
33. Ah-Pine F, Malaterre-Septembre A, Bedoui Y, et al. Complement activation and up-regulated expres-sion of anaphylatoxin C3a/C3aR in glioblastoma: deciphering the links with TGF-β and VEGF. Can-cers (Basel) 2023; 15(9): 2647. [
DOI]
34. Xia S, Lal B, Tung B, et al. Tumor microenviron-ment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neu-ro oncol 2015; 18(4): 507-517 [
DOI]
35. Salviano-Silva A, Wollmann K, Brenna S, et al. Ex-tracellular Vesicles Carrying Tenascin-C are Clini-cal Biomarkers and Improve Tumor-Derived DNA Analysis in Glioblastoma Patients. ACS nano 2025; 19(10): 9844-9859. [
DOI]
36. Xu H, Zhang A, Han X, et al. ITGB2 as a prognostic indicator and a predictive marker for immunother-apy in gliomas. Cancer Immunol Immunother 2022; 71(3): 645-660. [
DOI]
37. Soman A, Nair SA. Unfolding the cascade of SER-PINA3: Inflammation to cancer. Biochim Biophys Acta Rev Cancer 2022; 1877(5): 188760. [
DOI]
38. Yilmaz A, Loustau T, Salomé N, et al. Advances on the roles of tenascin-C in cancer. J Cell Sci 2022; 135(18): jcs260244. [
DOI]
39. Xu H, Long S, Xu C, et al. TNC upregulation pro-motes glioma tumourigenesis through TDG-mediated active DNA demethylation. Cell Death Discov 2024; 10(1): 347. [
DOI]
40. Zhang Z, Yu B, Gu Y, et al. Fibroblast‐derived tenascin‐C promotes S chwann cell migration through β1‐integrin dependent pathway during pe-ripheral nerve regeneration. Glia 2016; 64(3): 374-385. [
DOI]
41. Li F, Wu H, Du X, et al. Epidermal growth factor re-ceptor-targeted neoantigen peptide vaccination for the treatment of non-small cell lung cancer and glioblastoma. Vaccines (Basel) 2023; 11(9): 1460. [
DOI]
42. Deng Z, Zhan P, Yang K, et al. Identification of per-sonalized neoantigen-based vaccines and immune subtype characteristic analysis of glioblastoma based on abnormal alternative splicing. Am J Can-cer Res 2022; 12(8): 3581. [
Article]
43. Ma S, Ba Y, Ji H, et al. Recognition of tumor-associated antigens and immune subtypes in gli-oma for mRNA vaccine development. Front Immu-nol 2021; 12: 738435. [
DOI]
44. Singh K, Batich KA, Wen PY, et al. Designing clini-cal trials for combination immunotherapy: a framework for glioblastoma. Clin Cancer Res 2022; 28(4): 585-593. [
DOI]
45. Bunse L, Bunse T, Krämer C, et al. Clinical and translational advances in glioma immunotherapy. Neurotherapeutics 2022; 19(6): 1799-1817. [
DOI]
46. Biswas N, Chakrabarti S, Padul V, et al. Designing neoantigen cancer vaccines, trials, and outcomes. Front Immunol 2023; 14: 1105420. [
DOI]
47. Agosti E, Zeppieri M, De Maria L, et al. Glioblasto-ma immunotherapy: a systematic review of the present strategies and prospects for advance-ments. International journal of molecular sciences 2023; 24(20): 15037. [
DOI]
48. Mestrallet G. Predicting Immunotherapy Out-comes in Glioblastoma Patients through Machine Learning. Cancers (Basel) 2024; 16(2): 408. [
DOI]
49. Liu X, Zhao Z, Dai W, et al. The development of immunotherapy for the treatment of recurrent gli-oblastoma. Cancers (Basel) 2023; 15(17): 4308. [
DOI]
50. Gong G, Jiang L, Zhou J, et al. Advancements in targeted and immunotherapy strategies for glio-ma: toward precision treatment. Front Immunol 2025; 15: 1537013. [
DOI]
51. Fittall MW, Van Loo P. Translating insights into tumor evolution to clinical practice: promises and challenges. Genome Med 2019; 11(1): 20. [
DOI]
52. MacDonald WJ, Purcell C, Pinho-Schwermann M, et al. Heterogeneity in Cancer. Cancers (Basel) 2025; 17(3): 441. [
DOI]
53. Proietto M, Crippa M, Damiani C, et al. Tumor het-erogeneity: preclinical models, emerging technol-ogies, and future applications. Front Oncol 2023; 13: 1164535. [
DOI]
54. Feng H, Jin Y, Wu B. Strategies for neoantigen screening and immunogenicity validation in cancer immunotherapy. Int J Oncol 2025; 66(6): 43. [
DOI]
55. Nibeyro G, Baronetto V, Folco JI, et al. Unraveling tumor specific neoantigen immunogenicity predic-tion: a comprehensive analysis. Front Immunol 2023; 14: 1094236. [
DOI]