دوره 20، شماره 2 - ( دو ماهنامه طب جنوب 1396 )                   جلد 20 شماره 2 صفحات 244-217 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nabipour I. The Application of Corals in Bone Tissue Engineering. Iran South Med J 2017; 20 (2) :217-244
URL: http://ismj.bpums.ac.ir/article-1-873-fa.html
نبی پور ایرج. کاربرد مرجان‌ها در مهندسی بافت استخوان. مجله طب جنوب. 1396; 20 (2) :217-244

URL: http://ismj.bpums.ac.ir/article-1-873-fa.html


مرکز تحقیقات زیست فناوری دریایی خلیج‌فارس، پژوهشکده علوم زیست پزشکی خلیج‌فارس، دانشگاه علوم پزشکی بوشهر، بوشهر، ایران ، inabipour@gmail.com
چکیده:   (7693 مشاهده)

اسکلت طبیعی مرجان‌ها و هیدروکسی آپاتیت مرجانی به عنوان جایگزین استخوانی در ترمیم نقایص استخوانی در مدل‌های جانوری و انسانی از دو دهه پیش به کار رفته‌اند. این جایگزین‌های استخوانی دارای ویژگی‌های هدایت استخوانی (Osteocondutive)، زیست تجزیه‌پذیری و زیست سازگاری می‌باشند. هم اکنون، بر روی مرجان‌ها، سه دیدگاه تحقیقاتی مد نظر می‌باشد که شامل کاربرد در ساخت کمپوزیت‌های استخوانی، ساخت داربست جهت اتصال سلول‌های بنیادی و نیز در رهیافت‌های ساخت داربست در توأمان با فاکتورهای رشد می‌باشند. این مقاله مروری به کاربرد گسترده مرجان‌ها در تجربیات بالینی به عنوان جایگزین استخوان و رهیافت‌های ساخت داربست در توأمان با سلول در مهندسی بافت استخوان پرداخته است.

متن کامل [PDF 1792 kb]   (7771 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: اختلالات سیستمیک- متابولیکی
دریافت: 1395/10/12 | پذیرش: 1395/11/3 | انتشار: 1396/2/9

فهرست منابع
1. Tissue engineering and regenerative medicine. National Institute of Biomedical Imaging and Bioengineering (NIBIB). 2013. (Accessed Jul 4, 2016, at https://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-medicine) [Article]
2. Jabbarzadeh E, Blanchette J, Shazly T, et al. Vascularization of biomaterials for bone tissue engineering: current approaches and major challenges. Current Angiogenesis. 2012; 1(3): 180-91. [Google Scholar]
3. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004; 4(8): 743-65. [PubMed] [Google Scholar]
4. Castells-Sala C, Alemany-Ribes M, Fernández-Muiños T, et al. Current applications of tissue engineering in biomedicine. J Biochips & Tissue Chips 2013; S2: 1-14. [Google Scholar]
5. Sheikh Z, Najeeb S, Khurshid Z, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials 2015; 8(9): 5744-94. [Google Scholar]
6. Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res 2000; 51(3): 376-82. [PubMed] [Google Scholar]
7. Karimi I, Bigham-Sadegh A, Oryan A, et al. Concurrent use of greater omentum with persian gulf coral on bone healing in dog: a radiological and histopathological study. IJVS 2013; 8(2): 35-42. [Google Scholar]
8. Nabipour I. Megatrends in medicine. Bushehr: Bushehr University of Medical Sciences Press, 2014, 88. (Persian) [Google Scholar]
9. Hou R, Chen F, Yang Y, et al. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J Biomed Mater Res A 2007; 80(1): 85-93. [PubMed] [Google Scholar]
10. Nandi SK, Roy S, Mukherjee P, et al. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 2010; 132: 15-30. [PubMed] [Google Scholar]
11. Chiroff RT, White EW, Weber KN, et al. Tissue ingrowth of Replamineform implants. J Biomed Mater Res 1975; 9(4): 29-45. [PubMed] [Google Scholar]
12. Saha A, Yadav R, Rajendran N. Biomaterials from sponges, ascidians and other marine organisms. Int J Pharm Sci Rev 2014; 27(2): 100-9. [Google Scholar]
13. Clarke SA, Walsh P, Maggs CA, et al. Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 2011; 29(6): 610-7. [PubMed] [Google Scholar]
14. Silva TH, Alves A, Ferreira BM, et al. Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Materials Rev 2012; 57(5): 276-306. [Google Scholar]
15. Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2004; 2(2): 65-73. [PubMed] [Google Scholar]
16. Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974; 247(5438): 220-2. [PubMed] [Google Scholar]
17. Sivakumar M, Kumar TS, Shantha KL, et al. Development of hydroxyapatite derived from Indian coral. Biomaterials 1996; 17(17): 1709-14. [PubMed] [Google Scholar]
18. Demers C, Hamdy CR, Corsi K, et al. Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 2002; 12(1): 15-35. [PubMed] [Google Scholar]
19. Guillemin G, Patat JL, Fournie J, et al. The use of coral as a bone graft substitute. J Biomed Mater Res 1987; 21(5): 557-67. [PubMed] [Google Scholar]
20. Roux FX, Brasnu D, Loty B, et al. Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg 1988; 69(4): 510-3. [PubMed] [Google Scholar]
21. Pouliquen JC, Noat M, Verneret C, et al. Coral substituted for bone grafting in posterior vertebral arthrodesis in children. Initial results. Rev Chir Orthop Reparatrice Appar Mot 1989; 75(6): 360-9. [PubMed] [Google Scholar]
22. Papacharalambous SK, Anastasoff KI. Natural coral skeleton used as onlay graft for contour augmentation of the face. A preliminary report. Int J Oral Maxillofac Surg 1993; 22(5): 260-4. [PubMed] [Google Scholar]
23. Kumar VM, Govind GK, Siva B, et al. Corals as Bone Substitutes. J Int Oral Health 2016; 8(1): 96-102. [Google Scholar]
24. Jeyabaskaran R, Lyla PS, Khan SA. Coral: [Google Scholar]
25. Knackstedt MA, Arns CH, Senden TJ, et al. Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials 2006; 27(13): 2776-86. [PubMed] [Google Scholar]
26. Chou J, Hao J, Ben-Nissan B, et al. Coral exoskeletons as a precursor material for the development of a calcium phosphate drug delivery system for bone tissue engineering. Biol Pharm Bull 2013; 36(11): 1662-5. [PubMed] [Google Scholar]
27. Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J 2016; 98-B(1 Suppl A): 6-9. [PubMed] [Google Scholar]
28. Holmes RE. Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 1979; 63(5): 626-33. [PubMed] [Google Scholar]
29. Holmes R, Mooney V, Bucholz R, et al. A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop Relat Res 1984; (188): 252-62. [PubMed] [Google Scholar]
30. Sartoris DJ, Gershuni DH, Akeson WH, et al. Coralline hydroxyapatite bone graft substitutes: preliminary report of radiographic evaluation. Radiology 1986; 159(1): 133-7. [PubMed] [Google Scholar]
31. Sartoris DJ, Holmes RE, Bucholz RW, et al. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation. Invest Radiol 1987; 22(7): 590-6. [Google Scholar]
32. Mora F, Ouhayoun JP. Clinical evaluation of natural coral and porous hydroxyapatite implants in periodontal bone lesions: results of a 1-year follow-up. J Clin Periodontol 1995; 22(11): 877-84. [PubMed] [Google Scholar]
33. Preidler KW, Lemperle SM, Holmes RE, et al. Coralline hydroxyapatite bone graft substitutes. Evaluation of bone density with dual energy x-ray absorptiometry. Invest Radiol 1996; 31(11): 716-23. [PubMed] [Google Scholar]
34. Elsinger EC, Leal L. Coralline hydroxyapatite bone graft substitutes. J Foot Ankle Surg 1996; 35(5): 396-9. [PubMed] [Google Scholar]
35. Rahimi F, Maurer BT, Enzweiler MG. Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery. J Foot Ankle Surg 1997; 36(3): 192-203. [PubMed] [Google Scholar]
36. Coughlin MJ, Grimes JS, Kennedy MP. Coralline hydroxyapatite bone graft substitute in hindfoot surgery. Foot Ankle Int 2006; 27(1): 19-22. [PubMed] [Google Scholar]
37. Thalgott JS, Klezl Z, Timlin M, et al. Anterior lumbar interbody fusion with processed sea coral (coralline hydroxyapatite) as part of a circumferential fusion. Spine (Phila Pa 1976) 2002; 27(24): E518-25. [PubMed] [Google Scholar]
38. Korovessis P, Repanti M, Koureas G. Does coralline hydroxyapatite conduct fusion in instrumented posterior spine fusion. Stud Health Technol Inform 2002; 91: 109-13. [PubMed] [Google Scholar]
39. Mendelson BC, Jacobson SR, Lavoipierre AM, et al. The fate of porous hydroxyapatite granules used in facial skeletal augmentation. Aesthetic Plast Surg 2010; 34(4): 455-61. [PubMed] [Google Scholar]
40. Fu K, Xu Q, Czernuszka J, et al. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Biomed Mater 2013; 8(6): 065007. [PubMed] [Google Scholar]
41. Michel J, Penna M, Kochen J, et al. Recent advances in hydroxyapatite scaffolds containing mesenchymal stem cells. Stem Cells Int 2015; 2015: 305217. [PubMed] [Google Scholar]
42. Zhang S, Mao T, Wang H. An experimental study on the bone repairing ability of recombinant human bone morphogenetic protein-2-coral composited artificial bone. Zhonghua Kou Qiang Yi Xue Za Zhi 1998; 33(1): 13-4. [PubMed] [Google Scholar]
43. Arnaud E, De Pollak C, Meunier A, et al. Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 1999; 20(20): 1909-18. [PubMed] [Google Scholar]
44. Chen F, Chen S, Tao K, et al. Marrow-derived osteoblasts seeded into porous natural coral to prefabricate a vascularised bone graft in the shape of a human mandibular ramus: experimental study in rabbits. Br J Oral Maxillofac Surg 2004; 42(6): 532-7. [PubMed] [Google Scholar]
45. Ma Q, Mao T, Liu B, et al. Vascular osteomuscular autograft prefabrication using coral, type I collagen and recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg 2000; 38(5): 561-4. [PubMed] [Google Scholar]
46. Al-Salihi KA. Tissue-engineered bone via seeding bone marrow stem cell derived osteoblasts into coral: a rat model. Med J Malaysia 2004; 59 Suppl B: 200-1. [PubMed] [Google Scholar]
47. Liu G, Zhang Y, Liu B, et al. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Biomaterials 2013; 34(11): 2655-64. [PubMed] [Google Scholar]
48. Geiger F, Lorenz H, Xu W, et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 2007; 41(4): 516-22. [PubMed] [Google Scholar]
49. AL-Salihi KA. In vitro evaluation of Malaysian natural coral porites bone graft substitutes (CORAGRAF) for bone tissue engineering: A preliminary study. Braz J Oral Sci 2009; 8(4): 210-16. [Google Scholar]
50. Tran CT, Gargiulo C, Thao HD, et al. Culture and differentiation of osteoblasts on coral scaffold from human bone marrow mesenchymal stem cells. Cell Tissue Bank 2011; 12(4): 247-61. [PubMed] [Google Scholar]
51. Tripathi A, Murthy PSN, Keshri G, et al. Tissue Engineered Osteogenesis in Bone Defects by Homologous Osteoblasts Loaded on Sterile Bioresorbable Coral Scaffold in Rabbits. Surg Sci 2011; 2(7): 369-75. [Google Scholar]
52. Cai L, Wang Q, Gu C, et al. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering. Biomaterials 2011; 32(33): 8497-505. [PubMed] [Google Scholar]
53. Shafiei-Sarvestani Z, Oryan A, Bigham AS, et al. The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg 2012; 10(2): 96-101. [PubMed] [Google Scholar]
54. Liu G, Zhang Y, Liu B, et al. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Biomaterials 2013; 34(11): 2655-64. [PubMed] [Google Scholar]
55. Manassero M, Viateau V, Deschepper M, et al. Bone regeneration in sheep using acropora coral, a natural resorbable scaffold, and autologous mesenchymal stem cells. Tissue Eng Part A 2013; 19(13-14): 1554-63. [PubMed] [Google Scholar]
56. Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, et al. A Comparative Study on Morphochemical Properties and Osteogenic Cell Differentiation within Bone Graft and Coral Graft Culture Systems. Int J Med Sci 2013; 10(12): 1608-14. [PubMed] [Google Scholar]
57. Geng W, Ma D, Yan X, et al. Engineering tubular bone using mesenchymal stem cell sheets and coral particles. Biochem Biophys Res Commun 2013; 433(4):595-601. [PubMed] [Google Scholar]
58. Nandi SK, Kundu B, Mukherjee J, et al. Converted marine coral hydroxyapatite implants with growth factors: in vivo bone regeneration. Mater Sci Eng C Mater Biol Appl 2015; 49: 816-23. [PubMed] [Google Scholar]
59. Zamani S, Mobasherpour I, Salahi E. Synthesis of nano calcium hydroxyapatite from Persian Gulf coral. Proceedings of the 4th international conference on Nanostructures (ICNS4): 2012 March 12-14, Kish Island, Iran. Tehran: Sharif University of Technology 2012; 775-7. [Google Scholar]
60. Parizi AM, Oryan A, Shafiei-Sarvestani Z, et al. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med 2012; 23(2): 473-83. [PubMed] [Google Scholar]
61. Parizi AM, Oryan A, Shafiei-Sarvestani Z, et al. Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction. J Orthop Traumatol 2013; 14(4): 259-68. [PubMed] [Google Scholar]
62. Leal MC, Calado R, Sheridan C, et al. Coral aquaculture to support drug discovery. Trends Biotechnol 2013; 31(10): 555-61. [PubMed] [Google Scholar]
63. Sergeeva NS, Britaev TA, Sviridova IK, et al. Scleractinium coral aquaculture skeleton: a possible 3D scaffold for cell cultures and bone tissue engineering. Bull Exp Biol Med 2014; 156(4): 504-8. [PubMed] [Google Scholar]
64. Miura T, Yokokawa R. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices. Dev Growth Differ 2016; 58(6): 505-15. [PubMed] [Google Scholar]
65. Davies JA, Cachat E. Synthetic biology meets tissue engineering. Biochem Soc Trans 2016; 44(3): 696-701. [PubMed] [Google Scholar]
66. Green DW, Padula MP, Santos J, et al. A therapeutic potential for marine skeletal proteins in bone regeneration. Mar Drugs 2013; 11(4): 1203-20. [PubMed] [Google Scholar]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله طب جنوب می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian South Medical Journal

Designed & Developed by: Yektaweb