Volume 22, Issue 5 (Iranian South Medical Journal 2019)                   Iran South Med J 2019, 22(5): 264-277 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourkamalzadeh M, Abtahi froushani S M. In-vitro Apoptotic Effects of Deferoxamine on the Glioblastoma Cell Line. Iran South Med J 2019; 22 (5) :264-277
URL: http://ismj.bpums.ac.ir/article-1-1171-en.html
1- Department of Microbiology, School of Veterinary Medicine, Urmia University, Urmia, Iran
2- Department of Microbiology, School of Veterinary Medicine, Urmia University, Urmia, Iran , sm.abtahi@urmia.ac.ir
Abstract:   (3028 Views)
Background: Research suggests the inhibitory effects of deferoxamine as an iron chelator on erythroleukemia cells. The present study was conducted to investigate the effects of deferoxamine on B92 cells as a model of glial cells carcinoma.
Materials and Methods: The present experimental study treated 6×104 B92 cells with 0, 10, 50 and 100 µM of deferoxamine for 24 hours in the presence or absence of 10 μmol/l of ferric chloride. Morphological changes were evaluated in the treated cells compared to in the control sample using an inverse optical microscope. The inhibitory and cytotoxic effects of deferoxamine were evaluated using the dimethylimidazole-diphenyl tetrazolium bromide (MTT) reduction and neutral red uptake assay. The data were analyzed using the Kruskal-Wallis test. P <0.05 was set as the level of statistical significance.
Results: The inhibitory effects of deferoxamine on the proliferation of B92 cells were identified after 24 hours in a way that the cells began to accumulate in the presence of deferoxamine. Ten μmol/l of ferric chloride prevented these morphological changes. Deferoxamine was also found to significantly and 
dose-dependently inhibit the vitality and viability of B92 cells. Moreover, the data showed that ferric chloride prevents the emergence of the effects of treating B92 cells with deferoxamine.
Conclusion: Deferoxamine exerts in-vitro antiproliferative effects on the glial cell line B92.
Full-Text [PDF 879 kb]   (789 Downloads)    
Type of Study: Original | Subject: Nervous System
Received: 2019/06/16 | Accepted: 2019/08/21 | Published: 2019/12/1

References
1. Rick JW, Shahin M, Chandra A, et al. Systemic Therapy for Brain Metastases. Crit Rev Oncol Hematol 2019; 142: 44-50. [DOI:10.1016/j.critrevonc.2019.07.012]
2. Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer cell 2017; 31(3): 326-41. [DOI:10.1016/j.ccell.2017.02.009]
3. Omuro A, DeAngelis LM. Glioblastoma and Other Malignant Gliomas: A Clinical Review. JAMA 2013; 310(17): 1842-50. [DOI:10.1001/jama.2013.280319]
4. Meyer M, Reimand J, Lan X, et al. Single Cell-Derived Clonal Analysis of Human Glioblastoma Links Functional and Genomic Heterogeneity. Proc Natl Acad Sci U S A 2015; 112(3): 851-6. [DOI:10.1073/pnas.1320611111]
5. Scott JG, Bauchet L, Fraum TJ, et al. Recur Sivepurtioning Analysis of Prognostic Factors for Glioblastoma Patients Aged 70 Years or Older. Cancer 2012; 118(22): 5595-600. [DOI:10.1002/cncr.27570]
6. Hervey-Jumper SL, Berger MS. Insular glioma surgery: an evolution of thought and practice. J Neurosurg 2019; 130(1):9-16. [DOI:10.3171/2018.10.JNS181519]
7. Molina-Marquez A, Vila M, Vigara J, et al. The Bacterial Phytoene Desaturase-Encoding Gene (CRTI) is an Efficient Selectable Marker for the Genetic Transformation of Eukaryotic Microalgae. Metabolites 2019; 9(3): 57-8. [DOI:10.3390/metabo9030049]
8. Schiffer D, Annovazzi L, Casalone C, et al. Glioblastoma: Microenvironment and Niche Concept. Cancers 2019; 11(1): 350-5. [DOI:10.3390/cancers11010005]
9. Suzuki K, Kataoka N, Inoue A, et al. High Saturation Magnetization and Soft Magnetic Properties of bcc Fe-Zr-B Alloys With Ultrafine Grain Structure. Mater Trans 1990; 31(8): 743-6. [DOI:10.2320/matertrans1989.31.743]
10. AlMawlawi D, Coombs N, Moskovits M. Magnetic Properties of Fe Deposited Into Anodic Aluminum Oxide Pores as a Function of Particle Size. Appl Phys 1991; 70(8): 4421-5. [DOI:10.1063/1.349125]
11. Haar CP, Hebbar P, Wallace GC, et al. Drug Resistance in Glioblastoma: A Mini Review. Neurochem Res 2012; 37(6): 1192-200. [DOI:10.1007/s11064-011-0701-1]
12. Sun JZ, Sun YC, Sun L. Synthesis of Surface Modified Fe3O4 Super Paramagnetic Nanoparticles for Ultra Sound Examination and Magnetic Resonance Imaging for Cancer Treatment. J Photochem Photobiol B 2019; 197: 111547. [DOI:10.1016/j.jphotobiol.2019.111547]
13. Flora SJ, Pachauri VJ. Chelation in Metal Intoxication. Int J Environ Res Public Health 2010; 7(7): 2745-88. [DOI:10.3390/ijerph7072745]
14. Yang Y, Xu Y, Su A, et al. Effects of Deferoxamine on Leukemia In Vitro and Its Related Mechanism. Med Sci Monit 2018; 24: 6735-41. [DOI:10.12659/MSM.910325]
15. Almeida C, Souza E, Oliveira G. Use of Tyrosine Kinase Inhibitors in the Treatment of Chronic Myeloid Leukemia (CML). Sci Elec Arch 2016; 9(5): 131-46.
16. Firouzbakhtkh S, Ghasemi K, Motamed N, et al. The Evaiuation of chalator therapy in reducing serum ferritin and improving Ejection fraction (EF%) in thalassemic patients. Iran South Med J 2015; 18 (2) :280-287.
17. khezri S, Salehhaggho L, Abtahi Foroushani SM. The Protective Role of Glycyrrhizin on Ethanol- Damaged B92 Glial Cells in Vitro. Armaghane danesh 2019; 24(3). (Persian)
18. Jamalidoust M, Ravanshad M, Namayandeh M, et al. Construction of AAV-rat-IL4 and Evaluation of its Modulating Effect on Abeta (1-42)-Induced Proinflammatory Cytokines in Primary Microglia and the B92 Cell Line by Quantitative PCR Assay. Jundishapur J Microbiol 2016; 9(3): 344-5. [DOI:10.5812/jjm.30444]
19. Yu Z, Chen ZB, Yang L, et al. Zinc Chelator TPEN Induces Pancreatic Cancer Cell Death Through Causing Oxidative Stress and Inhibiting Cell Autophagy. J Cell Physiol 2019; 12(6): 240-53. [DOI:10.1002/jcp.28670]
20. Ramadan S, Barlog M, Roach J, et al. Synthesis of TPEN Variants to Improve Cancer Cells Selective Killing Capacity. Bioorg Chem 2019; 87(4): 366-72. [DOI:10.1016/j.bioorg.2019.03.045]
21. Lopez J, Ramchandani D, Vahdat L. Copper Depletion as a Therapeutic Strategy in Cancer. Met Ions Life Sci 2019; 19(9): 212-6.
22. Wang Y, Yu L, Ding J, et al. Iron Metabolism in Cancer. Int J Mol Sci 2019; 20(1): 95. [DOI:10.3390/ijms20010095]
23. Saltman P. The Role of Chelation in Iron Metabolism. J Chem Educ 1965; 42(12): 682-7. [DOI:10.1021/ed042p682]
24. Dusek P, Schneider SA, Aaseth J. Iron Chelation in the Treatment of Neurodegenerative Diseases. J Trace Elem Med Biol 2016; 38: 81-92. [DOI:10.1016/j.jtemb.2016.03.010]
25. Kunos CA, Chu E, Beumer JH, et al. Phase I Trial of Daily Triapin in Combination with Cisplation Chemotheraphy for Advanced-Stage Malignancies. Cancer Chemother Pharmacol 2017; 79(1): 201-7. [DOI:10.1007/s00280-016-3200-x]
26. Bird ST, Swain RS, Tian F, et al. Effects of Deferasirox Dose and Decreasingserum Feritin Concentrations on Kindney Function in Paediatric Patients: An Analysis of Clinical Laboratory Data from Poole Clinical Studies. Lancet Child Adolesc Health 2019; 3(1): 15-22. [DOI:10.1016/S2352-4642(18)30335-3]
27. Kuang Y, Guo W, Ling J, et al. Iron-Dependent CDK1 Activity Promotes Lung Carcinogenesis Via Activation of the GP130/STAT3 Signaling Pathway. Cell Death Dis 2019; 10: 297. [DOI:10.1038/s41419-019-1528-y]
28. Yu X, Blanden A, Tsang AT, et al. Thiosemicarbazones Functioning As Zinc Metallochaperones to Reactivate Mutant p53. Mol Pharmacol 2017; 91(6): 567-75. [DOI:10.1124/mol.116.107409]
29. Saliba AN, Harb AR, Taher AT. Iron Chelation Therapy in Transfusion-Dependent Thalassemia Patients: Current Strategies and Future Directions. J Blood Med 2015; 6: 197-209. [DOI:10.2147/JBM.S72463]
30. Rassu G, Salis A, Porcu EP, et al. Composite Chitosan/Alginate Hydrogel for Controlled Release of Deferoxamine: A System to Potentially Treat Iron Dysregulation Diseases. Carbohydr Polym 2016; 136: 1338-47. [DOI:10.1016/j.carbpol.2015.10.048]
31. Li B, Esposito BP, Wang S, et al. Desferrioxamine-Caffeine Shows Improved Efficacy in Chelating Iron and Depleting Cancer Stem Cells. J Trace Elem Med Biol 2019; 52: 232-8. [DOI:10.1016/j.jtemb.2019.01.004]
32. Katsura Y, Ohara T, Noma K, et al. A Novel Combination Cancer Therapy with Iron Chelator Targeting Cancer Stem Cells via Suppressing Stemness. Cancers 2019; 11(2): 177. [DOI:10.3390/cancers11020177]
33. Lynn JV, Urlaub KM, Ranganathan K, et al. The Role of Deferoxamine in Irradiated Breast Reconstruction: A Study of Oncologic Safety. Plast Reconstr Surg 2019; 143(6): 1666-76. [DOI:10.1097/PRS.0000000000005647]
34. Moon JH, Jeong JK, Park SY. Deferoxamine Inhibits TRAIL-Mediated Apoptosis Via Regulation of Autophagy in Human Colon Cancer Cells. Oncol Rep 2015; 33(3): 1171-6. [DOI:10.3892/or.2014.3676]
35. Zhang W, Wu Y, Yan Q, et al. Deferoxamine Enhances Cell Migration and Invasion Through Promotion of HIF-1α Expression and Epithelial-Mesenchymal Transition in Colorectal Cancer. Oncol Rep 2014; 31(1): 111-6. [DOI:10.3892/or.2013.2828]
36. zarei L, abtahi foroshani M, Garajedagi A, et al. The Effects of Bifidobacterium Bifidum (BBCWF) on Proliferation of K562 Cell Line. J Fasa Univ Med Sci 2017; 7(1): 21-7. (Persian)
37. Shushtari N, Abtahi Froushani SM. Caffeine Augments The Instruction of Anti-Inflammatory Macrophages by The Conditioned Medium of Mesenchymal Stem Cells. Cell J 2017; 19(3): 415-24.
38. Umemura M, Kim JH, Aoyama H, et al. The Iron Chelating Agent, Deferoxamine Detoxifies Fe(Salen)-Induced Cytotoxicity. J Pharmacol Sci 2017; 134(4): 203-10. [DOI:10.1016/j.jphs.2017.07.002]
39. Rick JW, Shahin M, Chandra A, et al. Systemic Therapy for Brain Metastases. Crit Rev Oncol Hematol 2019; 142: 44-50. [DOI:10.1016/j.critrevonc.2019.07.012]
40. Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer cell 2017; 31(3): 326-41. [DOI:10.1016/j.ccell.2017.02.009]
41. Omuro A, DeAngelis LM. Glioblastoma and Other Malignant Gliomas: A Clinical Review. JAMA 2013; 310(17): 1842-50. [DOI:10.1001/jama.2013.280319]
42. Meyer M, Reimand J, Lan X, et al. Single Cell-Derived Clonal Analysis of Human Glioblastoma Links Functional and Genomic Heterogeneity. Proc Natl Acad Sci U S A 2015; 112(3): 851-6. [DOI:10.1073/pnas.1320611111]
43. Scott JG, Bauchet L, Fraum TJ, et al. Recur Sivepurtioning Analysis of Prognostic Factors for Glioblastoma Patients Aged 70 Years or Older. Cancer 2012; 118(22): 5595-600. [DOI:10.1002/cncr.27570]
44. Hervey-Jumper SL, Berger MS. Insular glioma surgery: an evolution of thought and practice. J Neurosurg 2019; 130(1):9-16. [DOI:10.3171/2018.10.JNS181519]
45. Molina-Marquez A, Vila M, Vigara J, et al. The Bacterial Phytoene Desaturase-Encoding Gene (CRTI) is an Efficient Selectable Marker for the Genetic Transformation of Eukaryotic Microalgae. Metabolites 2019; 9(3): 57-8. [DOI:10.3390/metabo9030049]
46. Schiffer D, Annovazzi L, Casalone C, et al. Glioblastoma: Microenvironment and Niche Concept. Cancers 2019; 11(1): 350-5. [DOI:10.3390/cancers11010005]
47. Suzuki K, Kataoka N, Inoue A, et al. High Saturation Magnetization and Soft Magnetic Properties of bcc Fe-Zr-B Alloys With Ultrafine Grain Structure. Mater Trans 1990; 31(8): 743-6. [DOI:10.2320/matertrans1989.31.743]
48. AlMawlawi D, Coombs N, Moskovits M. Magnetic Properties of Fe Deposited Into Anodic Aluminum Oxide Pores as a Function of Particle Size. Appl Phys 1991; 70(8): 4421-5. [DOI:10.1063/1.349125]
49. Haar CP, Hebbar P, Wallace GC, et al. Drug Resistance in Glioblastoma: A Mini Review. Neurochem Res 2012; 37(6): 1192-200. [DOI:10.1007/s11064-011-0701-1]
50. Sun JZ, Sun YC, Sun L. Synthesis of Surface Modified Fe3O4 Super Paramagnetic Nanoparticles for Ultra Sound Examination and Magnetic Resonance Imaging for Cancer Treatment. J Photochem Photobiol B 2019; 197: 111547. [DOI:10.1016/j.jphotobiol.2019.111547]
51. Flora SJ, Pachauri VJ. Chelation in Metal Intoxication. Int J Environ Res Public Health 2010; 7(7): 2745-88. [DOI:10.3390/ijerph7072745]
52. Yang Y, Xu Y, Su A, et al. Effects of Deferoxamine on Leukemia In Vitro and Its Related Mechanism. Med Sci Monit 2018; 24: 6735-41. [DOI:10.12659/MSM.910325]
53. Almeida C, Souza E, Oliveira G. Use of Tyrosine Kinase Inhibitors in the Treatment of Chronic Myeloid Leukemia (CML). Sci Elec Arch 2016; 9(5): 131-46.
54. Firouzbakhtkh S, Ghasemi K, Motamed N, et al. The Evaiuation of chalator therapy in reducing serum ferritin and improving Ejection fraction (EF%) in thalassemic patients. Iran South Med J 2015; 18 (2) :280-287.
55. khezri S, Salehhaggho L, Abtahi Foroushani SM. The Protective Role of Glycyrrhizin on Ethanol- Damaged B92 Glial Cells in Vitro. Armaghane danesh 2019; 24(3). (Persian)
56. Jamalidoust M, Ravanshad M, Namayandeh M, et al. Construction of AAV-rat-IL4 and Evaluation of its Modulating Effect on Abeta (1-42)-Induced Proinflammatory Cytokines in Primary Microglia and the B92 Cell Line by Quantitative PCR Assay. Jundishapur J Microbiol 2016; 9(3): 344-5. [DOI:10.5812/jjm.30444]
57. Yu Z, Chen ZB, Yang L, et al. Zinc Chelator TPEN Induces Pancreatic Cancer Cell Death Through Causing Oxidative Stress and Inhibiting Cell Autophagy. J Cell Physiol 2019; 12(6): 240-53. [DOI:10.1002/jcp.28670]
58. Ramadan S, Barlog M, Roach J, et al. Synthesis of TPEN Variants to Improve Cancer Cells Selective Killing Capacity. Bioorg Chem 2019; 87(4): 366-72. [DOI:10.1016/j.bioorg.2019.03.045]
59. Lopez J, Ramchandani D, Vahdat L. Copper Depletion as a Therapeutic Strategy in Cancer. Met Ions Life Sci 2019; 19(9): 212-6.
60. Wang Y, Yu L, Ding J, et al. Iron Metabolism in Cancer. Int J Mol Sci 2019; 20(1): 95. [DOI:10.3390/ijms20010095]
61. Saltman P. The Role of Chelation in Iron Metabolism. J Chem Educ 1965; 42(12): 682-7. [DOI:10.1021/ed042p682]
62. Dusek P, Schneider SA, Aaseth J. Iron Chelation in the Treatment of Neurodegenerative Diseases. J Trace Elem Med Biol 2016; 38: 81-92. [DOI:10.1016/j.jtemb.2016.03.010]
63. Kunos CA, Chu E, Beumer JH, et al. Phase I Trial of Daily Triapin in Combination with Cisplation Chemotheraphy for Advanced-Stage Malignancies. Cancer Chemother Pharmacol 2017; 79(1): 201-7. [DOI:10.1007/s00280-016-3200-x]
64. Bird ST, Swain RS, Tian F, et al. Effects of Deferasirox Dose and Decreasingserum Feritin Concentrations on Kindney Function in Paediatric Patients: An Analysis of Clinical Laboratory Data from Poole Clinical Studies. Lancet Child Adolesc Health 2019; 3(1): 15-22. [DOI:10.1016/S2352-4642(18)30335-3]
65. Kuang Y, Guo W, Ling J, et al. Iron-Dependent CDK1 Activity Promotes Lung Carcinogenesis Via Activation of the GP130/STAT3 Signaling Pathway. Cell Death Dis 2019; 10: 297. [DOI:10.1038/s41419-019-1528-y]
66. Yu X, Blanden A, Tsang AT, et al. Thiosemicarbazones Functioning As Zinc Metallochaperones to Reactivate Mutant p53. Mol Pharmacol 2017; 91(6): 567-75. [DOI:10.1124/mol.116.107409]
67. Saliba AN, Harb AR, Taher AT. Iron Chelation Therapy in Transfusion-Dependent Thalassemia Patients: Current Strategies and Future Directions. J Blood Med 2015; 6: 197-209. [DOI:10.2147/JBM.S72463]
68. Rassu G, Salis A, Porcu EP, et al. Composite Chitosan/Alginate Hydrogel for Controlled Release of Deferoxamine: A System to Potentially Treat Iron Dysregulation Diseases. Carbohydr Polym 2016; 136: 1338-47. [DOI:10.1016/j.carbpol.2015.10.048]
69. Li B, Esposito BP, Wang S, et al. Desferrioxamine-Caffeine Shows Improved Efficacy in Chelating Iron and Depleting Cancer Stem Cells. J Trace Elem Med Biol 2019; 52: 232-8. [DOI:10.1016/j.jtemb.2019.01.004]
70. Katsura Y, Ohara T, Noma K, et al. A Novel Combination Cancer Therapy with Iron Chelator Targeting Cancer Stem Cells via Suppressing Stemness. Cancers 2019; 11(2): 177. [DOI:10.3390/cancers11020177]
71. Lynn JV, Urlaub KM, Ranganathan K, et al. The Role of Deferoxamine in Irradiated Breast Reconstruction: A Study of Oncologic Safety. Plast Reconstr Surg 2019; 143(6): 1666-76. [DOI:10.1097/PRS.0000000000005647]
72. Moon JH, Jeong JK, Park SY. Deferoxamine Inhibits TRAIL-Mediated Apoptosis Via Regulation of Autophagy in Human Colon Cancer Cells. Oncol Rep 2015; 33(3): 1171-6. [DOI:10.3892/or.2014.3676]
73. Zhang W, Wu Y, Yan Q, et al. Deferoxamine Enhances Cell Migration and Invasion Through Promotion of HIF-1α Expression and Epithelial-Mesenchymal Transition in Colorectal Cancer. Oncol Rep 2014; 31(1): 111-6. [DOI:10.3892/or.2013.2828]
74. zarei L, abtahi foroshani M, Garajedagi A, et al. The Effects of Bifidobacterium Bifidum (BBCWF) on Proliferation of K562 Cell Line. J Fasa Univ Med Sci 2017; 7(1): 21-7. (Persian)
75. Shushtari N, Abtahi Froushani SM. Caffeine Augments The Instruction of Anti-Inflammatory Macrophages by The Conditioned Medium of Mesenchymal Stem Cells. Cell J 2017; 19(3): 415-24.
76. Umemura M, Kim JH, Aoyama H, et al. The Iron Chelating Agent, Deferoxamine Detoxifies Fe(Salen)-Induced Cytotoxicity. J Pharmacol Sci 2017; 134(4): 203-10. [DOI:10.1016/j.jphs.2017.07.002]

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian South Medical Journal

Designed & Developed by: Yektaweb