1. Hajigholami S, Vaise Malekshahi Z. Nano Pack-aged Diblock and Curcumin: a New Approach Inor-der To Drug Resistance in Breast Cancer. Iran South Med J 2017; 19(6): 951–61. [
Article]
2. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024; 74(3): 229-63. [
DOI]
3. Pont M, Marqués M, Sorolla A. Latest therapeuti-cal approaches for triple-negative breast cancer: From preclinical to clinical research. Int J Mol Sci 2024; 25(24): 13518. [
DOI]
4. Manoochehri H, Farrokhnia M, Sheykhhasan M, et al. Key target genes related to anti-breast cancer activity of ATRA: A network pharmacology, molec-ular docking and experimental investigation. Heli-yon 2024; 10(14): e34300. [
DOI]
5. Manoochehri H, Asadi S, Tanzadehpanah H, et al. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients. Gene Reports 2021; 25: 101415. 10. [
DOI]
6. Wang L, Jin Z, Master RP, et al. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interac-tions, and Therapeutic Implications. Cancers (Ba-sel) 2022; 14(13): 3287. [
DOI]
7. Palomeras S, Ruiz-Martínez S, Puig T. Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance. Molecules. 2018; 23(9): 2193. [
DOI]
8. Hillebrand LE, Reinheckel T. Impact of proteolysis on cancer stem cell functions. Biochimie 2019;1 66: 214-22. [
DOI]
9. Chen J, Chen S, Zhuo L, et al. Regulation of cancer stem cell properties, angiogenesis, and vasculo-genic mimicry by miR-450a-5p/SOX2 axis in colo-rectal cancer. Cell Death Dis 2020; 11(3): 173. [
DOI]
10. Manoochehri H, Sheykhhasan M, Samadi P, et al. System biological and experimental validation of miRNAs target genes involved in colorectal cancer radiation response. Gene Reports 2019; 17: 100540.10. [
DOI]
11. Manoochehri H, Jalali A, Tanzadehpanah H, et al. Identification of key Gene Targets for Sensitizing Colorectal Cancer to Chemoradiation: an Integra-tive Network Analysis on Multiple Transcriptomics Data. J Gastrointest Cancer 2022; 53(3): 649-68. [
DOI]
12. Çorbacıoğlu Ş K, Aksel G. Receiver operating char-acteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turk J Emerg Med 2023; 23(4): 195-8. [
DOI]
13. Puckett Y, Patel P, Bokhari AA. Prednisone. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. [
Article]
14. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, et al. Doxorubicin pathways: Pharmacodynam-ics and adverse effects. Pharmacogenet Ge-nomics. 2011; 21(7): 440-6. [
DOI]
15. Sharma H, Wadhwa R. Mercaptopurine. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; [
Article]
16. Johnson DB, Lopez MJ, Kelley B. Dexamethasone. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. [
Article]
17. Hanoodi M, Mittal M. Methotrexate. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Pub-lishing; 2025: 32310574. [
Article]
18. Nousari HC, Sragovich A, Kimyai-Asadi A, et al. Mycophenolate mofetil in autoimmune and in-flammatory skin disorders. J Am Acad Dermatol 1999;40(2): 265-8. [
DOI]
19. Awosika AO, Below J, Das JM. Vincristine. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. [
Article]
20. Faruqi A, Tadi P. Cytarabine. In: StatPearls [Inter-net]. Treasure Island (FL): StatPearls Publishing; 2025. [
Article]
21. Fassas A, Anagnostopoulos A. The use of liposo-mal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk Lymphoma 2005; 46(6): 795-802. [
DOI]
22. Voduc D, Cheang M, Nielsen T. GATA-3 expression in breast cancer has a strong association with es-trogen receptor but lacks independent prognostic value. Cancer Epidemiol Biomarkers Prev 2008; 17(2): 365-73. [
DOI]
23. Sharma P, Alsharif S, Bursch K, et al. Keratin 19 regulates cell cycle pathway and sensitivity of breast cancer cells to CDK inhibitors. Sci Rep. 2019; 9(1): 14650. [
DOI]
24. Hosseinzadeh L, Kikhtyak Z, Laven-Law G, et al. The androgen receptor interacts with GATA3 to transcriptionally regulate a luminal epithelial cell phenotype in breast cancer. Genome Biol 2024; 25(1): 44. [
DOI]
25. Raap M, Gierendt L, Werlein C, et al. Co-expression of transcription factor AP-2beta (TFAP2B) and GATA3 in human mammary epithelial cells with intense, apicobasal immunoreactivity for CK8/18. J Mol Histol. 2021; 52(6): 1257-64. [
DOI]
26. Chen Y, Lin Y, Cui Z. Identification of adriamycin resistance genes in breast cancer based on mi-croarray data analysis. Transl Cancer Res 2020; 9(12): 7486-94. [
DOI]
27. De Lara S, Parris TZ, Werner Rönnerman E, et al. GATA3 as a putative marker of breast cancer me-tastasis-A retrospective immunohistochemical study. Breast J 2018; 24(2): 184-8. [
DOI]
28. Maneechotesuwan K, Yao X, Ito K, et al. Suppres-sion of GATA-3 nuclear import and phosphoryla-tion: a novel mechanism of corticosteroid action in allergic disease. PLoS Med 2009; 6(5): e1000076. [
DOI]