[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 24, Issue 5 (Iranian South Medical Journal 2021) ::
Iran South Med J 2021, 24(5): 481-504 Back to browse issues page
Persian Gulf Bivalves: Bioactive Pharmaceutical Compounds and Biomedical Applications
Nilofar Dehghan1 , Seyed Payam Ghazi1, Toba Zendehboudi1, Fatemeh Mohajer1, Ali Reza Afshar1, Arezo Kharadmehr1, Sahar Alamasi-Turk2, Amin Tamadon 3
1- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
2- Anatomy and Cell Biology Department, Bushehr University of Medical Sciences, Bushehr, Iran
3- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , amintamaddon@yahoo.com ORCID: 0000-0002-5180-4311
Abstract:   (825 Views)
Bivalves are a class of marine mollusks with high nutritional value in addition to various medicinal products. The Persian Gulf is home to 224 species from 29 families of bivalves identified so far. Based on research conducted in the Persian Gulf or other parts of the world, bioactive compounds exist in their shell and soft tissue. In this review article, we reviewed biomedical research related to bivalves. To this end, after classifying the species in the Persian Gulf, articles related to the evaluation of biomedical applications of bivalves in reputable journals in PubMed and Google Scholar databases were included in this study. Research has shown the presence of antioxidant, anti-inflammatory, anti-diabetic, anti-cancer, and anti-microbial compounds in bivalves. They have also been used to produce bioadhesives. Many studies have also used them as biomarkers for monitoring environmental pollution. Due to the species diversity of the Persian Gulf and the biomedical potentials of bivalves, more purposeful and practical research is needed for the production and extraction of medical and health products.
Keywords: Bivalves, Pharmaceutical bioactive compounds, Biomedicine, Persian Gulf
Full-Text [PDF 877 kb]   (188 Downloads)    
Type of Study: Review | Subject: General
Received: 2021/11/28 | Accepted: 2021/11/28 | Published: 2021/11/28
1. Hamed I, Özogul F, Özogul Y, et al. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr Rev Food Sci Food Safe 2015; 14(4): 446-65.
2. Cikoš AM, Jokić S, Šubarić D, et al. Overview On The Application Of Modern Methods For The Extraction Of Bioactive Compounds From Marine Macroalgae. Mar Drugs 2018; 16(10): 348.
3. Sun W, Wu W, Liu X, et al. Bioactive Compounds Isolated From Marine-Derived Microbes In China: 2009–2018. Mar Drugs 2019; 17(6): 339.
4. Centella MH, Arévalo-Gallegos A, Parra-Saldivar R, et al. Marine-Derived Bioactive Compounds For Value-Added Applications In Bio-And Non-Bio Sectors. J Clean Prod 2017; 168: 1559-65.
5. Vasan N, Baselga J, Hyman DM. A View On Drug Resistance In Cancer. Nature 2019; 575(7782): 299-309.
6. Melander RJ, Melander C. The Challenge Of Overcoming Antibiotic Resistance: An Adjuvant Approach?. ACS Infect Dis 2017; 3(8): 559-63.
7. Abdelmohsen UR, Balasubramanian S, Oelschlaeger TA, et al. Potential Of Marine Natural Products Against Drug-Resistant Fungal, Viral, And Parasitic Infections. Lancet Infect Dis 2017; 17(2): e30-e41.
8. Mayer AM, Lehmann VK. Marine Pharmacology In 1998: Marine Compounds With Antibacterial, Anticoagulant, Antifungal, Anti-Inflammatory, Anthelmintic, Antiplatelet, Antiprotozoal, And Antiviral Activities; With Actions On The Cardiovascular, Endocrine, Immune, And Nervous Systems; And Other Miscellaneous Mechanisms Of Action. Pharmacologist 2000; 42: 62-9.
9. Mayer AM, Rodríguez AD, Berlinck RG, et al. Marine Pharmacology In 2005–6: Marine Compounds With Anthelmintic, Antibacterial, Anticoagulant, Antifungal, Anti-Inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, And Antiviral Activities; Affecting The Cardiovascular, Immune And Nervous Systems, And Other Miscellaneous Mechanisms Of Action. Biochim Biophys Acta Gen Sub 2009; 1790(5): 283-308.
10. Mayer AM, Rodríguez AD, Berlinck RG, et al. Marine Pharmacology In 2007–8: Marine Compounds With Antibacterial, Anticoagulant, Antifungal, Anti-Inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, And Antiviral Activities; Affecting The Immune And Nervous System, And Other Miscellaneous Mechanisms Of Action. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153(2): 191-222.
11. Mayer AM, Rodríguez AD, TaglialatelaScafati O, et al. Marine Pharmacology In 2009–2011: Marine Compounds With Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, And Antiviral Activities; Affecting The Immune And Nervous Systems, And Other Miscellaneous Mechanisms Of Action. Mar Drugs 2013; 11(7): 2510-73.
12. Mayer AM, Rodríguez AD, TaglialatelaScafati O, et al. Marine Pharmacology In 2012–2013: Marine Compounds With Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, And Antiviral Activities; Affecting The Immune And Nervous Systems, And Other Miscellaneous Mechanisms Of Action. Mar Drugs 2017; 15(9): 273.
13. Mayer AM, Guerrero AJ, Rodríguez AD, et al. Marine Pharmacology In 2014–2015: Marine Compounds With Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, And Anthelmintic Activities; Affecting The Immune And Nervous Systems, And Other Miscellaneous Mechanisms Of Action. Mar Drugs 2020; 18(1): 5.
14. Mayer AM, Guerrero AJ, Rodríguez AD, et al. Marine Pharmacology In 2016–2017: Marine Compounds With Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis And Antiviral Activities; Affecting The Immune And Nervous Systems, And Other Miscellaneous Mechanisms Of Action. Mar Drugs 2021; 19(2): 49.
15. Gosling E. Marine Bivalve Molluscs. 2nd ed. United States: John Wiley & Sons, 2015, 44-52.
16. Haszprunar G. Mollusca (Molluscs). eLS, John Wiley & Sons, Ltd, 2020; 1(3): 565-71.
17. Sigwart JD. Zoology: Molluscs All Beneath the Sun, One Shell, Two Shells, More, or None. Curr Biol 2017; 27(14): R708-R10.
18. Carré M, Bentaleb I, Bruguier O, et al. Calcification Rate Influence On Trace Element Concentrations In Aragonitic Bivalve Shells: Evidences And Mechanisms. Geochim Cosmochim Acta 2006; 70(19): 4906-20.
19. Gerdol M, Gomez-Chiarri M, Castillo MG, et al. Immunity In Molluscs: Recognition And Effector Mechanisms, With A Focus On Bivalvia. In: Cooper E, editor. Advances In Comparative Immunology. Springer, Cham, 2018, 225-341.
20. Yang XR, Qiu YT, Zhao YQ, et al. Purification And Characterization Of Antioxidant Peptides Derived From Protein Hydrolysate Of The Marine Bivalve Mollusk Tergillarca Granosa. Mar Drugs 2019; 17(5): 251.
21. Joy M, Chakraborty K. Antioxidative And Anti-Inflammatory Pyranoids And Isochromenyl Analogues From Corbiculid Bivalve Clam, Villorita Cyprinoides. Food Chem 2018; 251: 125-34.
22. Grevskott DH, Svanevik CS, Sunde M, et al. Marine Bivalve Mollusks As Possible Indicators Of Multidrug-Resistant Escherichia Coli And Other Species Of The Enterobacteriaceae Family. Front Microbiol 2017; 8: 24.
23. Yap CK. Antiviral Compounds From Marine Bivalves For Evaluation Against SARS-Cov-2. J PeerSci 2020; 2(2): e1000015.
24. Oh R, Lee MJ, Kim YO, et al. Myticusin-Beta, Antimicrobial Peptide From The Marine Bivalve, Mytilus Coruscus. Fish Shellfish Immun 2020; 99: 342-52.
25. Sahayanathan GJ, Padmanaban D, Raja K, et al. Anticancer Effect Of Purified Polysaccharide From Marine Clam Donax Variabilis On A549 Cells. J Food Biochem 2020; 44(11): e13486.
26. Krishnamoorthy V, Chuen LY, Sivayogi V, et al. Exploration Of Antioxidant Capacity Of Extracts Of Perna Viridis, A Marine Bivalve. Pharmacogn Mag 2019; 15(66): 402-9.
27. Soldatov AA, Gostyukhina OL, Borodina AV, et al. Glutathione Antioxidant Complex And Carotenoid Composition In Tissues Of The Bivalve Mollusk Anadara Kagoshimensis (Tokunaga, 1906). J Evol Biochem Phys 2017; 53(4): 289-97.
28. Goya AB, Tarnovius S, Hatfield RG, et al. Paralytic Shellfish Toxins And Associated Toxin Profiles In Bivalve Mollusc Shellfish From Argentina. Harmful Algae 2020; 99: 101910.
29. Pojeta Jr J, Speden I, Beu A, et al. Treatise on Invertebrate Paleontology: Part N, Mollusca 6—Bivalvia. 1 st ed. Geological Society of Amer, 1971, N1-N272.
30. Giribet G, Wheeler W. On Bivalve Phylogeny: A High-Level Analysis Of The Bivalvia (Mollusca) Based On Combined Morphology And DNA Sequence Data. Invertebr Biol 2002; 121(4): 271-324.
31. Plazzi F, Passamonti M. Footprints Of Unconventional Mitochondrial Inheritance In Bivalve Phylogeny: Signatures Of Positive Selection On Clades With Doubly Uniparental Inheritance. J Zool Syst Evol Res 2019; 57(2): 258-71.
32. Bouchet P, Rocroi JP, Bieler R, et al. Nomenclator Of Bivalve Families With A Classification Of Bivalve Families. Malacologia 2010; 52(2): 1-84.
33. Natarajan SB, Kim YS, Hwang JW, et al. Immunomodulatory Properties Of Shellfish Derivatives Associated With Human Health. RSC Adv 2016; 6(31): 26163-77.
34. Halpern GM. Anti-Inflammatory Effects Of A Stabilized Lipid Extract Of Perna Canaliculus (Lyprinol®). Allerg Immunol 2000; 32(7): 272-8.
35. Mirshahi M, Mirshahi P, Negro S, et al. Extract Of Indian Green Mussel, Perna Viridis (L.) Shows Inhibition Of Blood Capillary Formation In Vitro. Pertanika J Trop Agric Sci 2009; 32(1): 35-42.
36. Kumar V, Ashutosh M, Nagarajan K, et al. Ameliorative Effect Of Green Lipped Mussel Extract On Vincristine-Induced Painful Neu-Ropathy In Rats. J Pharmacol Drug Metab 2014; 1: 1-7.
37. Annamalai N, Anburaj R, Jayalakshmi S, et al. Antibacterial Activities Of Green Mussel (Perna Viridis) And Edible Oyster (Crassostrea Madrasensis). Res J Microbiol 2007; 2(12): 978-82.
38. Cha HJ, Hwang DS, Lim S. Development Of Bioadhesives From Marine Mussels. Biotechnol J 2008; 3(5): 631-8.
39. Yap CK, Ismail A, Tan SG, et al. Assessment Of Different Soft Tissues Of The Green-Lipped Mussel Perna Viridis (Linnaeus) As Biomonitoring Agents Of Pb: Field And Laboratory Studies. Water Air Soil Poll 2004; 153: 253-68.
40. Mendis E, Rajapakse N, Byun HG, et al. Investigation Of Jumbo Squid (Dosidicus Gigas) Skin Gelatin Peptides For Their In Vitro Antioxidant Effects. Life Sci 2005; 77(17): 2166-78.
41. Vieira MA, Oliveira DD, Kurozawa LE. Production Of Peptides With Radical Scavenging Activity And Recovery Of Total Carotenoids Using Enzymatic Protein Hydrolysis Of Shrimp Waste. J Food Biochem 2016; 40(4): 517-25.
42. Mamelona J, Saint‐Louis R, Pelletier É. Nutritional Composition And Antioxidant Properties Of Protein Hydrolysates Prepared From Echinoderm Byproducts. Int J Food Sci Tech 2010; 45(1): 147-54.
43. Wu HT, Jin WG, Sun SG, et al. Identification Of Antioxidant Peptides From Protein Hydrolysates Of Scallop (Patinopecten Yessoensis) Female Gonads. Eur Food Res Tech 2016; 242(5): 713-22.
44. Amado IR, Vázquez JA, González MP, et al. Production Of Antihypertensive And Antioxidant Activities By Enzymatic Hydrolysis Of Protein Concentrates Recovered By Ultrafiltration From Cuttlefish Processing Wastewaters. Biochem Eng J 2013; 76: 43-54.
45. Yan N, Chen X. Sustainability: Don't Waste Seafood Waste. Nature 2015; 524(7564): 155-7.
46. Bruno A, Rossi C, Marcolongo G, et al. Selective In Vivo Anti-Inflammatory Action Of The Galactolipid Monogalactosyl diacyl glycerol. Eur J Pharmacol 2005; 524(1-3): 159-68.
47. Benkendorff K. Molluscan Biological And Chemical Diversity: Secondary Metabolites And Medicinal Resources Produced By Marine Molluscs. Biol Rev 2010; 85(4): 757-75.
48. Nagash YS, Nazeer RA, Kumar NS. In Vitro Antioxidant Activity Of Solvent Extracts Of Mollusks (Loligo Duvauceli And Donax Strateus) From India. World J Fish Mar Sci 2010; 2: 240-5.
49. Whitehouse MW, Macrides TA, Kalafatis N, et al. Anti-Inflammatory Activity Of A Lipid Fraction (Lyprinol) From The NZ Green-Lipped Mussel. Inflammopharmacology 1997; 5(3): 237-46.
50. Chakraborty K, Chakkalakal SJ, Joseph D. Response Of Pro-Inflammatory Prostaglandin Contents In Anti-Inflammatory Supplements From Green Mussel Perna Viridis L. In A Time-Dependent Accelerated Shelf-Life Study. J Funct Foods 2014; 7: 527-40.
51. Wei N, Lin XK, Niu RL, et al. Overview On Anticancer Agent From Meretrix Meretrix. Food Drug 2007; 9(11): 63-8.
52. Tsai JS, Chen JL, Pan BS. ACE-Inhibitory Peptides Identified From The Muscle Protein Hydrolysate Of Hard Clam (Meretrix Lusoria). Process Biochem 2008; 43(7): 743-7.
53. Bierer TL, Bui LM. Improvement Of Arthritic Signs In Dogs Fed Green-Lipped Mussel (Perna Canaliculus). J Nutr 2002; 132(6): 1634S-6S.
54. Chakraborty K, Joy M. High-Value Compounds From The Molluscs Of Marine And Estuarine Ecosystems As Prospective Functional Food Ingredients: An Overview. Food Res Int 2020; 137: 109637.
55. Brayer GD, Sidhu G, Maurus R, et al. Subsite Mapping Of The Human Pancreatic Α-Amylase Active Site Through Structural, Kinetic, And Mutagenesis Techniques. Biochemistry 2000; 39(16): 4778-91.
56. Joy M, Chakraborty K, Pananghat V. Comparative Bioactive Properties Of Bivalve Clams Against Different Disease Molecular Targets. J Food Biochem 2016; 40(4): 593-602.
57. Joy M, Chakraborty K. An Unprecedented Antioxidative Isopimarane Norditerpenoid From Bivalve Clam, Paphia Malabarica With Anti-Cyclooxygenase And Lipoxygenase Potential. Pharm Biol 2017; 55(1): 819-24.
58. Ravi C, Karthiga A, Venkatesan V. Isolation And Biomedical Screening Of The Tissue Extracts Of Two Marine Gastropods Hemifusus Pugilinus (Born, 1778) And Natica Didyma (Roding, 1798). Asian Fish Sci 2012; 25: 158-69.
59. Porto TS, Rangel R, Furtado NA, et al. Pimarane-Type Diterpenes: Antimicrobial Activity Against Oral Pathogens. Molecules 2009; 14(1): 191-9.
60. Sun L, Li D, Tao M, et al. Scopararanes C–G: New Oxygenated Pimarane Diterpenes From The Marine Sediment-Derived Fungus Eutypella Scoparia FS26. Mar Drugs 2012; 10(3): 539-50.
61. Xia X, Qi J, Liu Y, et al. Bioactive Isopimarane Diterpenes From The Fungus, Epicoccum Sp. HS-1, Associated With Apostichopus Japonicus. Mar Drugs 2015; 13(3): 1124-32.
62. Tiwari P, Rahuja N, Kumar R, et al. Search For Antihyperglycemic Activity In Few Marine Flora And Fauna. Indian J Sci Tech 2008; 1(5): 1-5.
63. Abirami P, Arumugam M, Ajithkumar TT, et al. Isolation And Characterization Of 37 Kda Heparinase From The Purple Fluid Of Dolabella Auricularia. Indian J Geo Mar Sci 2011; 40(1): 112-6.
64. Robledo JAF, Yadavalli R, Allam B, et al. From The Raw Bar To The Bench: Bivalves As Models For Human Health. Dev Comp Immunol 2019; 92: 260-82.
65. Ciavatta ML, Lefranc F, Carbone M, et al. Marine Mollusk‐Derived Agents With Antiproliferative Activity As Promising Anticancer Agents To Overcome Chemotherapy Resistance. Med Res Rev 2017; 37(4): 702-801.
66. Andrianasolo EH, Haramaty L, McPhail KL, et al. Bathymodiolamides A And B, Ceramide Derivatives From A Deep-Sea Hydrothermal Vent Invertebrate Mussel, Bathymodiolus Thermophilus. J Nat Prod 2011; 74(4): 842-6.
67. Abad JL, Nieves I, Rayo P, et al. Straightforward Access To Spisulosine And 4, 5-Dehydrospisulosine Stereoisomers: Probes For Profiling Ceramide Synthase Activities In Intact Cells. J Org Chem 2013; 78(12): 5858-66.
68. Sánchez AM, Malagarie-Cazenave S, Olea N, et al. Spisulosine (ES-285) Induces Prostate Tumor PC-3 And Lncap Cell Death By De Novo Synthesis Of Ceramide And PKCζ Activation. Eur J Pharmacol 2008; 584(2-3): 237-45.
69. Lee C, Chun W, Zhao R, et al. Anticancer Effects Of An Extract From The Scallop Patinopecten Yessoensis On MCF‑7 Human Breast Carcinoma Cells. Oncol Lett 2017; 14(2): 2207-17.
70. Ibrahim HD, Xue P, Eltahir EA. Multiple Salinity Equilibria And Resilience Of Persian/Arabian Gulf Basin Salinity To Brine Discharge. Front Mar Sci 2020; 7: 573.
71. Sharifinia M, Daliri M, Kamrani E. Estuaries And Coastal Zones In The Northern Persian Gulf (Iran). Coasts And Estuaries. Elsevier, 2019, 57-68.
72. Al-Salem SM, Uddin S, Al-Yamani F. An Assessment Of Microplastics Threat To The Marine Environment: A Short Review In Context Of The Arabian/Persian Gulf. Mar Environ Res 2020; 159: 104961.
73. Salimi L, Hajiali A. Determination Of Heavy Metals Concentrations In Different Depths In Persian Gulf (Bandar Abbas Region) In Warm And Cold Seasons. Int J Sci Eng Sci 2018; 2(2): 12-4.
74. Mehr MR, Keshavarzi B, Moore F, et al. Spatial Distribution, Environmental Risk And Sources Of Heavy Metals And Polycyclic Aromatic Hydrocarbons (PAHs) In Surface Sediments-Northwest Of Persian Gulf. Cont Shelf Res 2020; 193: 104036.
75. Niamaimandi N. Biological Parameters And Abundance Of The Razor Clam,(Solen Brevis), From The Bushehr Area Of The Persian Gulf. Agric Forest Fish 2012; 1(1): 1-6.
76. Nabavi SMB, Salari-Aliabadi MA, Shamoradi AR, et al. Ecological Assessment Of Intertidal Ecosystems In Khark Island (Persian Gulf) Using Community Structure Of Macrobentic Bivalves. World J Fish Mar Sci 2011; 3(6): 559-63.
77. Niamaimandi N, Yarahmadi A, Tangestani A. Identification And Distribution Of Edible And Decoration Of The Shells From The Bushehr Area, Persian Gulf. J Aquat Anim Fish 2013; 4(15): 55-66. (Persian)
78. El-Sorogy A, Youssef M, Al-Kahtany K, et al. Distribution Of Intertidal Molluscs Along Tarut Island Coast, Arabian Gulf, Saudi Arabia. Pakistan J Zool 2016; 48(3): 611-23.
79. Hasan AK. A Taxonomic Review Of The Bivalve And Gastropod Mollusc Fauna Along The Saudi Intertidal Zone Of The Arabian Gulf. Mar Sci Ceased Lssuerg 1996; 17(1): 1-2.
80. Al-Kandari M, Oliver PG, Chen W, et al. Diversity And Distribution Of The Intertidal Mollusca Of The State Of Kuwait, Arabian Gulf. Region Stud Mar Sci 2020; 33: 100905.
81. Amoozadeh E, Malek M, Rashidinejad R, et al. Marine Organisms As Heavy Metal Bioindicators In The Persian Gulf And The Gulf Of Oman. Environ Sci Pollut Res Int 2014; 21(3): 2386-95.
82. Al-Khayat J, Al-Mohannadi M. Ecology And Biology Of The Benthic Bivalvia Amiantis Umbonella (Lamarck) In Khor Al-Adaid, Qatar. Egypt J Aquat Res 2006; 32(1): 419-30.
83. El-Sorogy AS, Alharbi T, Almadani S, et al. Molluscan Assemblage As Pollution Indicators In Al-Khobar Coastal Plain, Arabian Gulf, Saudi Arabia. J Afr Earth Sci 2019; 158: 103564.
84. Saeedi H, Ashja Ardalan A, Hassanzadeh Kiabi B, et al. Metal Concentrations In Razor Clam Solen Dactylus (Von Cosel, 1989) (Bivalvia: Solenidae), Sediments And Water In Golshahr Coast Of Bandar Abbas, Persian Gulf. Iran J Fish Sci 2012; 11(1): 165-83.
85. Khatir Z, Range P, Malik M, et al. Is It Forever? Genotoxicological Impact Of Marine Contaminants On Arabian/Persian Gulf Bivalves: An Experimental Approach. Region Stud Mar Sci 2020; 34: 101054.
86. Zeinalipour M, Hassanzadeh Kiabi B, Shokri MR, et al. Population Dynamic And Distribution Of Barbatia Decussata (Bivalvia: Arcidae) On Rocky Intertidal Shores In The Northern Persian Gulf (Iran). Trop Zool 2014; 27(3): 73-87.
87. Mohamed SZ, Al-Khayat JA. A Preliminary Check-List Of Benthic Mollusca On The Qatari Coasts, Arabian Gulf. Qatar Univ Sci J 1994; 14(1): 201-6.
88. Masaeli S, Ghavam Mostafavi P, Hosseinzadeh Sahaf H, et al. Molecular Identification And Phylogeny Of16species Of Bivalvia On Shores Of The Persian Gulf (Hengam Island, Larak Island, Geshm Island, Lenge Island). J Anim Phys Dev 2016; 9(4): 77-92. (Persian)
89. Azarmanesh H, Nabavi SM, Abdi R, et al. Effects Of The Sediment Grain Size On Metabolic Reaction Of Callista Umbonella In Oxidative Stress Caused By Hydrocarbon Pollution In The Coast Of Assaluyeh (North Of The Persian Gulf). J Oceanography 2018; 9(35): 11-20. (Persian)
90. Vaziri zadeh A, Mohammadi M, Fakhri A. Ecological Assessment Of Mollusc Communities In The Rocky Shores Of Bushehr Province. J Oceanography 2012; 3(9): 55-61. (Persian)
91. Azarbad H, Javanshir Khoei A, Mirvaghefi A, et al. Rock Oyster (Sacostrea Cucullata) Is Able To Absorb Heavy Metals? Case Study: Cadmium And Copper Absorption In Forests Mangrove. J Nat Environ 2011; 64(2): 113-23. (Persian)
92. Bayat Z, Hassan Shahian M, Askari Hosna M. Study The Crude Oil Degrading Bacteria Associated With Bivalve Crassostrea Gigas Collected From Persian Gulf (Bandar Abbas Provenance). Modares J Biotechnol 2017; 8(2): 15-24. (Persian)
93. Aliasgari E, Mashinchian Moradi A, Ehteshami F, et al. Seasonal Variation Of Glutathione S Transferase And Heavy Metal Pollution (Pb, Cd And Ni) In Pinctada Radiata. J Anim Biol 2017; 9(3): 77-93. (Persian)
94. Mortazavi MS, Aramideh A, Mohebbi L. Investigation And Determination Of Marine Biotoxins In The Shellfish Of Persian Gulf And Oman Sea. Iran Sci Fish J 2015; 24(2): 125-34. (Persian)
95. Zeinalipour M, Hassanzadeh Kiabi B, Shokri MR, et al. Distribution Of The Ark Clam Barbatia Decussata (Bivalvia: Arcidae) On Rocky Intertidal Shores In The Northern Persian Gulf. J Anim Environ 2015; 7(2): 77-89. (Persian)
96. Zeinalipour M, Hassanzadeh Kiabi B, Shokri MR, et al. Population Dynamic Of The Barbatia Decussata (Bivalvia: Arcades) From The Bandar Lenge Rocky Intertidal Shores (Persian Gulf - Hormozgan Province). J Anim Environ 2013; 5(4): 85-102. (Persian)
97. Kohan A, Nasrolahi A, Hassanzadeh Kiabi B. Effects Of Substrate Material And Depth On Spatial Distribution Of Saccostrea Cucullata In Intertidal Zones Of The Northern Persian Gulf. J Mar Biol 2018; 10(3): 53-62. (Persian)
98. Azimi A, Safahieh A, Dadollahi Sohrab A, et al. Heavy Metals (Hg, Cd, Pb And Cu) Bioaccumulation In The Oyster Crassostrea Gigas Of Imam Khomeini Port. J Mar Sci Tech 2012; 10(3): 23-32. (Persian)
99. Nouri M, Amiri P, Naji A. Distribution And Frequency Of Microplastics In Bivalve Of Pinctada Radiata And Sediments Of Bandar Lengehe. J Anim Environ 2020; 11(4): 337-44. (Persian)
100. Hosseini S, Zolgharnine H, Bargahi A, et al. Purification of Bysal Mussel (Modiolus sp. PG) Adhesive Protein fp-2 from Nortern Seashore of Persian Gulf. Iran South Med J 2017; 20(5): 481-91. (Persian)
101. Mortazavy Z, Esmaili Sari A, Riyahi Bakhtiari AR. Determination And Ratio Nikel To Vanadium From Oil Pollution In Pinctada Radiata And Saccosterea Cucullata In Coastal Of Hormozgan Province. Iran J Nat Resour 2005; 58(1): 159-72. (Persian)
102. Vojdani FN, Salarzadeh AR. Evaluation Of Filtration Rate Of (Isochrysis Aff Galbana) Microalgae In Pretty-Blocked Venus (Circenita Callipyga) At Different Temperature And Salinity. J Aquat Anim Fish 2015; 6(22): 69-77. (Persian)
103. Kamrani E, Behzadi S, Hashemipour F. Identification And Survey Of Bivalvia And Gastropoda In Bandar Abbas Coastal Waters (Persian Gulf). J Oceanography 2013; 4(13): 53-60. (Persian)
104. Attaran Fariman G, Rasti N, Naseri F. Phylogeny Of A Pearl Wing Oyster Species; Pteria Loveni (Bivalvia: Pteriidae) From Subtidalzone Of Chabahar Bay Based On CO1 Gene Sequence. Iran J Nat Resour 2016; 68(4): 603-13. (Persian)
105. Anam M, Zolgharnin H, Salari Aliabadi MA, et al. Morphological And Molecular Identification Of Modiolus Sp. PG (Bivalvia; Mytilidae) In Shibderaz, Qeshm Island. J Oceanography 2019; 10(38): 65-72. (Persian)
106. Velayatzadeh M, Mahab H, Hoseini M. Idenification And Abundance Of Bivalvia In Coasts Of Boushehr Province (Deylam, Bushehr, Dayer And Kangan) In Spring And Summer. J Mar Sci Tech Res 2013; 8(1): 91-104. (Persian)
107. Mahmoudi M, Safahieh A, Nikpour Y, et al. Evaluation Of Ark Clam (Barbatia Helblingii) As Biomonitor Agent For PAHs Contamination In Coastal Area Of Bushehr. J Environ Stud 2011; 37(58): 141-8. (Persian)
108. Nabavi SMB, Ghotbeddin N, Kochanian P, et al. Population Study On Dominant Bivalves In Hendijan Coast (Persion Gulf). J Mar Biol 2009; 1(2): 1-13. (Persian)
109. Zeinalipour M. The Study Of Growth, Population Dynamic And Larval Recruitment Of Bivalve, Mytilaster Lineatus, In Three Coastal Regions (Amirabad, Khazarabad And Noor) In Southern Shores Of Caspian Sea. Iran J Biol 2010; 23(4): 584-95. (Persian)
110. Daghooghi B. Appropriate Areas To Construction Of Pearl Oyster Culture Farms. Ecol Water Resours J 2019; 2(2): 11-9. (Persian)
111. Parvizi F, Noori A, Sharif Ranjbar M. Comparative Histology Of The Mantle Structure In A Pearl Oyster, Pinctada Radiata And An Edible Oyster Saccostrea Cucullata. Phys Aquat Biotechnol 2017; 5(1): 37-58. (Persian)
112. Arazm F, Safahieh A, Mohammadi M, et al. Correlation Between Polycyclic Aromatic Hydrocarbons Concentration In Sediment And Razor Clam (Solen Roseomaculatus) From Khors Of Bushehr Province. Environ Res 2016; 6(12): 85-96. (Persian)
113. Bouchet P, Rocroi JP, Bieler R, et al. Nomenclator of Bivalve Families With A Classification of Bivalve Families. Malacologia 2010; 52(2): 1-84.
114. Wang W, Shi H, Zhu J, et al. Purification And Structural Characterization Of A Novel Antioxidant And Antibacterial Protein From Arca Inflata. Int J Biol Macromol 2018; 116: 289-98.
115. Chen L, Song L, Li T, et al. A New Antiproliferative And Antioxidant Peptide Isolated From Arca Subcrenata. Mar Drugs 2013; 11(6): 1800-14.
116. Odeleye T, White WL, Lu J. Extraction Techniques And Potential Health Benefits Of Bioactive Compounds From Marine Molluscs: A Review. Food Funct 2019; 10(5): 2278-89.
117. Pachaiyappan A, Muthuvel A, Sadhasivam G, et al. In Vitro Antioxidant Activity Of Different Gastropods, Bivalves And Echinoderm By Solvent Extraction Method. Int J Pharma Sci Res 2014; 5(6): 2539.
118. Nazeer RA, Naqash SY. In Vitro Antioxidant Activity Of Two Molluscs, Loligo Duvauceli Orbigny And Donax Cuneatus Linnaeus, By Solvent Extraction Methods. Mediterr J Nutr Metab 2013; 6(1): 17-21.
119. Nazeer RA, Saranya MA, Naqash SY. Radical Scavenging And Amino Acid Profiling Of Wedge Clam, Donax Cuneatus (Linnaeus) Protein Hydrolysates. J Food Sci Technol 2014; 51(12): 3942-8.
120. Wang B, Li L, Chi CF, et al. Purification And Characterisation Of A Novel Antioxidant Peptide Derived From Blue Mussel (Mytilus Edulis) Protein Hydrolysate. Food Chem 2013; 138(2-3): 1713-9.
121. Shanmugam S, Shankar K, Ramachandiran S, et al. In Vitro Studies And Characterization Of Tissue Protein From Green Mussel, Perna Viridis (Linnaeus, 1758) For Antioxidant And Antibacterial Potential. Int J Pept Res Ther 2020; 26: 159-69.
122. Umayaparvathi S, Arumugam M, Meenakshi S, et al. Purification And Characterization Of Antioxidant Peptides From Oyster (Saccostrea Cucullata) Hydrolysate And The Anticancer Activity Of Hydrolysate On Human Colon Cancer Cell Lines. Int J Pept Res Ther 2014; 20: 231-43.
123. Sabana IR, Naufal M, Wiani I, et al. Synthesis Of Antioxidant Peptide SCAP1 (Leu-Ala-Asn-Ala-Lys). Egypt J Chem 2020; 63(3): 921-6.
124. Anggarani MA, Irawan RJ. Antioxidant Potential Of Madura Knife Scallop (Solen Sp) Extract As A Prevention Of Oxidative Stress. KEMAS J Kesehatan Masyarakat 2020; 15(3): 382-9.
125. Souissi N, Boughriba S, Abdelhedi O, et al. Extraction, Structural Characterization, And Thermal And Biomedical Properties Of Sulfated Polysaccharides From Razor Clam Solen Marginatus. RSC Adv 2019; 9(20): 11538-51.
126. Chi CF, Hu FY, Wang B, et al. Antioxidant And Anticancer Peptides From The Protein Hydrolysate Of Blood Clam (Tegillarca Granosa) Muscle. J Funct Food 2015; 15: 301-13.
127. Chen Y, Li C, Zhu J, et al. Purification And Characterization Of An Antibacterial And Anti-Inflammatory Polypeptide From Arca Subcrenata. Int J Biol Macromol 2017; 96: 177-84.
128. Hwang D, Kang MJ, Jo MJ, et al. AntiInflammatory Activity Of Β-Thymosin Peptide Derived From Pacific Oyster (Crassostrea Gigas) On NO and PGE2 Production By Down-Regulating NF-κB in LPS-induced RAW264. 7 Macrophage Cells. Mar Drugs 2019; 17(2): 129.
129. Chang HW, Sudirman S, Yen YW, et al. Blue Mussel (Mytilus Edulis) Water Extract Ameliorates Inflammatory Responses And Oxidative Stress On Osteoarthritis In Obese Rats. J Pain Res 2020; 13: 1109.
130. McPhee S, Hodges LD, Wright PF, et al. Prophylactic And Therapeutic Effects Of Mytilus Edulis Fatty Acids On AdjuvantInduced Arthritis In Male Wistar Rats. Prostaglandins Leukot Essent Fatty Acids 2010; 82(2-3): 97-103.
131. Wolecki D, Caban M, Pazdro K, et al. Simultaneous Determination Of Non-Steroidal Anti-Inflammatory Drugs And Natural Estrogens In The Mussels Mytilus Edulis Trossulus. Talanta 2019; 200: 316-23.
132. Sreejamole KL, Radhakrishnan CK, Padikkala J. Anti-Inflammatory Activities Of Aqueous/Ethanol And Methanol Extracts Of Perna Viridis Linn. In Mice. Inflammopharmacology 2011; 19(6): 335-41.
133. Wang L, Wu H, Chang N, et al. AntiHyperglycemic Effect Of The Polysaccharide Fraction Isolated From Mactra Veneriformis. Front Chem Sci Eng 2011; 5: 238-44.
134. Neves AC, Harnedy PA, FitzGerald RJ. Angiotensin Converting Enzyme And Dipeptidyl Peptidase-Iv Inhibitory, And Antioxidant Activities Of A Blue Mussel (Mytilus Edulis) Meat Protein Extract And Its Hydrolysates. J Aquat Food Prod Tech 2016; 25(8): 1221-33.
135. Xu J, Chen Z, Song L, et al. A New In Vitro Anti-Tumor Polypeptide Isolated From Arca Inflata. Mar Drugs 2013; 11(12): 4773-87.
136. Kim EK, Kim YS, Hwang JW, et al. Purification And Characterization Of A Novel Anticancer Peptide Derived From Ruditapes Philippinarum. Process Biochem 2013; 48(7): 1086-90.
137. Yang Z, Zhao Y, Yan H, et al. Isolation And Purification Of Oligopeptides From Ruditapes Philippinarum And Its Inhibition On The Growth Of DU‑145 Cells In Vitro. Mol Med Rep 2015; 11(2): 1063-8.
138. Xu W, Kong X, Jiang C, et al. The AntiTumor Effect Of A Polypeptide Extracted From Tegillarca Granosa Linnaeus On Renal Metastatic Tumor OS-RC-2 Cells. Arch Med Sci 2015; 11(4): 849-55.
139. Rusdaryanti AF, Amalia U, Suharto S. Antibacterial Activity Of Cao From Blood Cockle Shells (Anadara Granosa) Calcination Against Escherichia Coli. Biodiv J Biol Divers 2020; 21(6).
140. Eswar A, Ramamoorthy K, Mohanraj M, et al. In-vitro antibacterial activity and Brine Shrimp Lethality Test on selected three marine Mollusks from Velar Estuary, Parangipettai. Int J Curr Res 2014; 6(10): 9075-8.
141. Li C, Zhu J, Wang Y, et al. Antibacterial Activity Of AI-Hemocidin 2, A Novel NTerminal Peptide Of Hemoglobin Purified From Arca Inflata. Mar Drugs 2017; 15(7): 205.
142. Carriel-Gomes MC, Kratz JM, Müller VD, et al. Evaluation Of Antiviral Activity In Hemolymph From Oysters Crassostrea Rhizophorae And Crassostrea Gigas. Aquat Living Resour 2006; 19(2): 189-93.
143. Sathyan N, Philip R, Chaithanya ER, et al. Identification And Molecular Characterization Of Molluskin, A Histone-H2A-Derived Antimicrobial Peptide From Molluscs. Int Scholar Res Not 2012; 2012: 219656.
144. Chandran B, Rameshkumar G, Ravichandran S. Antimicrobial Activity From The Gill Extraction Of Perna Viridis (Linnaeus, 1758). Glob J Biotech Biochem 2009; 4(2): 88-92.
145. Kiran N, Siddiqui G, Khan A, et al. Extraction And Screening Of Bioactive Compounds With Antimicrobial Properties From Selected Species Of Mollusk And Crustacean. J Clin Cell Immunol 2014; 5(1): 1-5.
146. Maripandi A, Prakash L, Al-Salamah AA. HPTLC Separation Of Antibacterial Compounds From Perna Viridis And Portunus Sanguinolentus And Its Activity Tested Against Common Bacterial Pathogens. Adv Biotech 2010; 9(9): 24-8.
147. Moovendhan M, Seedevi P, Shanmugam A, et al. Antibiotic Susceptibility And Functional Group Characterization Of Pinna Nobilis Metabolites Against Clinical Isolates. J Biol Act Prod Nat 2015; 5(1): 52-7.
148. Takahashi KG, Kuroda T, Muroga K. Purification And Antibacterial Characterization Of A Novel Isoform Of The Manila Clam Lectin (MCL-4) From The Plasma Of The Manila Clam, Ruditapes Philippinarum. Comp Biochem Physiol B Biochem Mol Biol 2008; 150(1): 45-52.
149. Bhakta A, De R, Maiti K. Antibacterial Activity Of The Whole Body Extract Of Marine Mollusca (Cypraea Sp.) And Edible Oyster (Saccostrea Cucullata). World Wide J Multi Res Dev 2017; 3(10): 133-5.
150. Bao Y, Wang J, Li C, et al. A Preliminary Study On The Antibacterial Mechanism Of Tegillarca Granosa Hemoglobin By Derived Peptides And Peroxidase Activity. Fish Shellfish Immunol 2016; 51: 9-16.
151. Wiegemann M. Adhesion In Blue Mussels (Mytilus Edulis) And Barnacles (Genus Balanus): Mechanisms And Technical Applications. Aquat Sci 2005; 67(2): 166-76.
152. Jiang Z, Yu Y, Du L, et al. Peptide Derived From Pvfp-1 As Bioadhesive On Bio-Inert Surface. Colloid Surfaces B 2012; 90: 227-35.
153. Santonocito R, Venturella F, Dal Piaz F, et al. Recombinant Mussel Protein Pvfp-5β: A Potential Tissue Bioadhesive. J Biol Chem 2019; 294(34): 12826-35.
154. Sudatta BP, Sugumar V, Varma R, et al. Extraction, Characterization And Antimicrobial Activity Of Chitosan From Pen Shell, Pinna Bicolor. Int J Biol Macromol 2020; 163: 423-30.
155. Yap CK, Sharifinia M, Cheng WH, et al. A Commentary On The Use Of Bivalve Mollusks In Monitoring Metal Pollution Levels. Int J Environ Res Public Health 2021; 18(7): 3386.
156. Ghribi F, Richir J, Bejaoui S, et al. Trace Elements And Oxidative Stress In The Ark Shell Arca Noae From A Mediterranean Coastal Lagoon (Bizerte Lagoon, Tunisia): Are There Health Risks Associated With Their Consumption?. Environ Sci Pollut Res Int 2020; 27(13): 15607-23.
157. Moslen M, Miebaka CA, Boisa N. Bioaccumulation Of Polycyclic Aromatic Hydrocarbon (PAH) In A Bivalve (Arca Senilis-Blood Cockles) And Health Risk Assessment. Toxicol Rep 2019; 6: 990-7.
158. Safahieh A, Mahmoodi M, Nikpoor Y, et al. PAHs Concentration In Ark Clam (Barbatia Helblingii) From South Persian Gulf, Bushehr, Iran. Int J Environ Sci Dev 2011; 2(5): 394-8.
159. Harayashiki CAY, Márquez F, Cariou E, et al. Mollusk Shell Alterations Resulting From Coastal Contamination And Other Environmental Factors. Environ Pollut 2020; 265(Pt B): 114881.
160. Katsikatsou M, Anestis A, Pörtner HO, et al. Field Studies On The Relation Between The Accumulation Of Heavy Metals And Metabolic And HSR In The Bearded Horse Mussel Modiolus Barbatus. Comp Biochem Phys C Toxicol Pharma 2011; 153(1): 133-40.
161. Liu X, Wang WX. Time Changes In Biomarker Responses In Two Species Of Oyster Transplanted Into A Metal Contaminated Estuary. Sci Total Environ 2016; 544: 281-90.
162. Bergés-Tiznado ME, Páez-Osuna F, Notti A, et al. Biomonitoring Of Arsenic Through Mangrove Oyster (Crassostrea Corteziensis Hertlein, 1951) From Coastal Lagoons (SE Gulf Of California): Occurrence Of Arsenobetaine And Other Arseno-Compounds. Environ Monit Assess 2013; 185(9): 7459-68.
163. Páez-Osuna F, Osuna-Martínez CC. Bioavailability Of Cadmium, Copper, Mercury, Lead, And Zinc In Subtropical Coastal Lagoons From The Southeast Gulf Of California Using Mangrove Oysters (Crassostrea Corteziensis And Crassostrea Palmula). Arch Environ Contam Toxicol 2015; 68(2): 305-16.
164. Toledo-Ibarra GA, Resendiz KD, Ventura-Ramón GH, et al. Assessment Of Pollution Of The Boca De Camichin Estuary In Nayarit (Mexico) And Its Influence On Oxidative Stress In Crassostrea Corteziensis Oysters. Comp Biochem Physiol A Mol Integr Physiol 2016; 200: 47-55.
165. Jeng MS, Jeng WL, Hung TC, et al. Mussel Watch: A Review Of Cu And Other Metals In Various Marine Organisms In Taiwan, 1991–98. Environ Pollut 2000; 110(2): 207-15.
166. Chetoui I, Ghribi F, Bejaoui S, et al. Assessment Of Stress Biomarkers Responses In Mantle And Adductor Muscles Of Mactra Stultorum Following Lead Exposure. Highlight BioSci 2021; 4: 1-8.
167. Kesavan K, Murugan A, Venkatesan V, et al. Heavy Metal Accumulation In Molluscs And Sediment From Uppanar Estuary, Southeast Coast Of India. Thalassas 2013; 29(2): 15-21.
168. Aguirre-Rubí JR, Luna-Acosta A, Etxebarría N, et al. Chemical Contamination Assessment In Mangrove-Lined Caribbean Coastal Systems Using The Oyster Crassostrea Rhizophorae As Biomonitor Species. Environ Sci Pollut Res Int 2018; 25(14): 13396-415.
169. Da Silva AZ, Zanette J, Ferreira JF, et al. Effects Of Salinity On Biomarker Responses In Crassostrea Rhizophorae (Mollusca, Bivalvia) Exposed To Diesel Oil. Ecotoxicol Environ Saf 2005; 62(3): 376-82.
170. Ramdine G, Fichet D, Louis M, et al. Polycyclic Aromatic Hydrocarbons (PAHs) In Surface Sediment And Oysters (Crassostrea Rhizophorae) From Mangrove Of Guadeloupe: Levels, Bioavailability, And Effects. Ecotoxicol Environ Saf 2012; 79: 80-9.
171. Ribeiro EB, Noleto KS, De Oliveira SRS, et al. Biomarkers (Glutathione S-Transferase And Catalase) And Microorganisms In Soft Tissues Of Crassostrea Rhizophorae To Assess Contamination Of Seafood In Brazil. Mar Pollut Bull 2020; 158: 111348.
172. Langston WJ, Bebianno MJ, Burt GR. Metal Handling Strategies In Molluscs. Metal Metabolism In Aquatic Environments. Boston: Springer, 1998, 219-83.
173. Suratno S, Puspitasari R, Purnadayanti Z, et al. Metals Accumulation In Muscle Tissues And Digestive Contents Of Periglypta Reticulata (Kerang Geton) From Lancang Island, Jakarta. Indones J Chem 2020; 20(5): 1131-42.
174. Werner I, Teh SJ, Datta S, et al. Biomarker Responses In Macoma Nasuta (Bivalvia) Exposed To Sediments From Northern San Francisco Bay. Mar Environ Res 2004; 58(2-5): 299-304.
175. Ng YE, Yap C, Zakaria MP, et al. Trace Metal Concentrations In The Different Parts Of Perna Viridis Collected From Some Jetties In The Straits Of Johore. Pollut Res 2013; 32(1): 9-19.
176. Gueguen Y, Denis S, Adrien S, et al. Response Of The Pearl Oyster Pinctada Margaritifera To Cadmium And Chromium: Identification Of Molecular Biomarkers. Mar Pollut Bull 2017; 118(1-2): 420-6.
177. Bejaoui S, Rabeh I, Telahigue K, et al. Assessment Of Oxidative Stress, Genotoxicity And Histopathological Responses In The Digestive Gland Of Ruditapes Decussatus Collected From Northern Tunisian Lagoons. Sci Mar 2020; 84(4): 403-20.
178. Velez C, Galvão P, Longo R, et al. Ruditapes Philippinarum And Ruditapes Decussatus Under Hg Environmental Contamination. Environ Sci Pollut Res Int 2015; 22(15): 11890-904.
179. Bebianno MJ, Geret F, Hoarau P, et al. Biomarkers In Ruditapes Decussatus: A Potential Bioindicator Species. Biomarkers 2004; 9(4-5): 305-30.
180. Mansour C, Guibbolini M, Hacene OR, et al. Oxidative Stress And Damage Biomarkers In Clam Ruditapes Decussatus Exposed To A Polluted Site: The Reliable Biomonitoring Tools In Hot And Cold Seasons. Arch Environ Contam Toxicol 2020; 78(3): 478-94.
181. Bebianno MJ, Barreira LA. Polycyclic Aromatic Hydrocarbons Concentrations And Biomarker Responses In The Clam Ruditapes Decussatus Transplanted In The Ria Formosa Lagoon. Ecotox Environ Safe 2009; 72(7): 1849-60.
182. Aouini F, Trombini C, Sendra M, et al. Biochemical Response Of The Clam Ruditapes Philippinarum To Silver (AgD and AgNPs) Exposure And Application Of An Integrated Biomarker Response Approach. Mar Environ Res 2019; 152: 104783.
183. Rodriguez-Romero A, Jimenez-Tenorio N, Basallote MD, et al. Predicting The Impacts Of CO2 Leakage From Subseabed Storage: Effects Of Metal Accumulation And Toxicity On The Model Benthic Organism Ruditapes Philippinarum. Environ Sci Technol 2014; 48(20): 12292-301.
184. Mirza R, Dadollahi A, Safaieh A, et al. Polycyclic Aromatic Hydricarbon (PAHs) In Sediments And Rockyshore Oysters (Saccostrea Cucullata) In Intertidal Area Of Boushehr State (Persian Gulf). J Oceanography 2011; 2(5): 11-9. (Persian)
185. Sarker S, Vashistha D, Sarker MS, et al. DNA Damage In Marine Rock Oyster (Saccostrea Cucullata) Exposed To Environmentally Available PAHs And Heavy Metals Along The Arabian Sea Coast. Ecotox Environ Safe 2018; 151: 132-43.
186. Mansouri D, Fegrouche R, Harrak LE, et al. Contamination Of The Flesh Of Scrobularia Plana And Solen Marginatus (Lamellibranch Molluscs), Hosting The Estuary Of Sebou (Morocco), By Iron, Zinc, Copper And Lead. Int J Fish Aquat Stud 2018; 6(2): 223-7.
187. Sevgi S, Suzer EU. Homa Dalyanı’nda Sülüneslerde (Solen Marginatus) Hg, Cd, Pb ve Cr Birikimlerinin Incelenmesi. Su Ürünleri Dergisi 2019; 36(1): 31-9.
188. Arazm F, Safahieh A, Mohammadi M, et al. Correlation Between Polycyclic Aromatic Hydrocarbons Concentration In Sediment And Razor Clam (Solen Roseomaculatus) From Khors Of Bushehr Province. Environ Res 2016; 6(12): 85-96.
189. Ghosn M, Mahfouz C, Chekri R, et al. Assessment Of Trace Element Contamination And Bioaccumulation In Algae (Ulva Lactuca), Bivalves (Spondylus Spinosus) And Shrimps (Marsupenaeus Japonicus) From The Lebanese Coast. Region Stud Mar Sci 2020; 39: 101478.
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghan N, Ghazi S P, Zendehboudi T, Mohajer F, Afshar A R, Kharadmehr A, et al . Persian Gulf Bivalves: Bioactive Pharmaceutical Compounds and Biomedical Applications. Iran South Med J. 2021; 24 (5) :481-504
URL: http://ismj.bpums.ac.ir/article-1-1517-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 24, Issue 5 (Iranian South Medical Journal 2021) Back to browse issues page
دانشگاه علوم پزشکی بوشهر، طب جنوب ISMJ

Iranian South Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License which allows users to read,
copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly

Copyright © 2017, Iranian South Medical Journal| All Rights Reserved

Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4410