دوره 22، شماره 5 - ( دوماهنامه طب جنوب 1398 )                   جلد 22 شماره 5 صفحات 332-317 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shojaee Barjoee S, Azimzadeh H, kuchakzadeh M, MoslehArani A, Sodaiezadeh H. Dispersion and Health Risk Assessment of PM10 Emitted from the Stacks of a Ceramic and Tile industry in Ardakan, Yazd, Iran, Using the AERMOD Model. Iran South Med J 2019; 22 (5) :317-332
URL: http://ismj.bpums.ac.ir/article-1-1175-fa.html
شجاعی برجوئی سعید، عظیم‌زاده حمیدرضا، کوچک‌زاده محمدرضا، مصلح‌آرانی اصغر، سودائی‌زاده حمید. مدلسازی نحوه پراکنش و ارزیابی خطر سلامت مواجهه با PM10 انتشاریافته از دودکش‌های یکی از صنایع کاشی و سرامیک شهرستان اردکان با استفاده از مدل AERMOD. مجله طب جنوب. 1398; 22 (5) :317-332

URL: http://ismj.bpums.ac.ir/article-1-1175-fa.html


1- گروه آلودگی‌های محیط زیست، دانشکده محیط زیست، دانشگاه یزد، یزد، ایران ، said.shojaee71@gmail.com
2- گروه آلودگی‌های محیط زیست، دانشکده محیط زیست، دانشگاه یزد، یزد، ایران
3- بخش محیط زیست انسانی، اداره کل حفاظت محیط زیست استان یزد، یزد، ایران
چکیده:   (5582 مشاهده)
زمینه: در کشورهای در حال توسعه، آلودگی هوا ناشی از صنایع به عنوان تهدیدی جدی برای سلامت و بهداشت عمومی جوامع است. هدف از این پژوهش تعیین نحوه پراکندگی و ارزیابی خطر سلامت 10PM انتشار یافته از دودکش‌های یک کارخانه کاشی و سرامیک است.
مواد و روش‌ها: پژوهش حاضر به صورت توصیفی مقطعی در یکی از صنایع کاشی و سرامیک شهرستان اردکان انجام شد. ابتدا برای ترسیم نحوه پراکندگی و ارزیابی مواجهه با 10PM، اطلاعات انتشار دودکش‌ها، داده‌های هواشناسی و توپوگرافی برای اجرای مدل AERMOD تهیه گردید. سپس مقادیر غلظت شبیه‌سازی شده با استانداردهای EPA و WHO مقایسه و با استفاده از روابط پیشنهادی توسط EPA خطرات سلامتی مواجهه با 10PM در دو بخش خطرات سرطان‌زا و غیرسرطان‌زا محاسبه شد.
یافته‌ها: نتایج نشان داد پراکندگی 10PM به علت مسطح بودن ناحیه مدلسازی به صورت یکنواخت و در تمامی جهات صورت می‌گیرد. با مقایسه بیشینه‌های غلظت شبیه‌سازی شده با استانداردهای مذکور نتایج نشان داد، بیشینه‌های غلظت 10PM در بازه زمانی 24 ساعته برای دو استاندارد و در بازه زمانی سالانه برای استاندار WHO بالاتر از حد مجاز است. بر عکس متوسط‌های غلظت 24 ساعته و سالانه پایین‌تر از حدود مجاز پیش‌بینی شد. نتایج ارزیابی خطر سلامت در هر دو بخش خطرات سرطان‌زا و غیرسرطان‌زا قابل قبول تخمین زده شد.
نتیجه‌گیری: در این پژوهش هر چند سهم خطرات سرطان‌زایی و غیرسرطان‌زایی دودکش‌های کارخانه مورد بررسی قابل قبول محاسبه گردید ولی اثرات تجمعی صنایع اردکان می‌تواند احتمال وقوع چنین خطراتی را در ساکنین روستاهای اطراف صنایع تشدید نماید.
متن کامل [PDF 1432 kb]   (1462 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: 1398/4/27 | پذیرش: 1398/5/19 | انتشار: 1398/9/10

فهرست منابع
1. Omidi Khaniabadi Y, Rashidi R, Godarzi G, et al. Measurement of Mass Emission Values of Gaseous Pollutants from the Stack of Doroud Cement Plant. J Health Field 2014; 2(2): 36-42. (Persian)
2. Akhbari R, Amadeh H. Application of Pollution Haven Hypothesis in Identifying Dirty Industries Evidence of Iran-China Commercial Relationship. J Environ Sci Tech 2017; 19(2): 15-32. (Persian)
3. Nourmoradi H, Omidi khaniabadi Y, Goudarzi G, et al. Investigation on the Dust Dispersion (PM10 and PM2.5) by Doroud Cement Plant and Study of Its Individual Exposure Rates. J Ilam Univ Med Sci 2016; 24(1): 64-75. (Persian) [DOI:10.18869/acadpub.sjimu.24.1.64]
4. Noferesti AR, Atabi F, Nouri J, et al. Predicting the Mortality Rate Due to Particulate Matters Using AirQ Software and Health Risk Assessment in the City of Sanandaj. J Environ Sci Tech 2019; 21(2): 211-26. (Persian)
5. Mohseni Bandpi A, Eslami A, Shahsavani A, et al. Watersoluble and Organic Extracts of Ambient PM2. 5 in Tehran Air: Assessment of Genotoxic Effects on Human Lung Epithelial Cells (A549) by the Comet Assay. Toxin Rev 2017; 36(2): 116-24. [DOI:10.1080/15569543.2016.1259634]
6. Kermani M, Farzadkia M, Rezaei Kalantari R, et al. Assessment Risk of Heavy Metals in Particulate Matter Smaller than 10 Microns on Tehran's Kahrizak Compost Complex Workers in Winter 2016. Iran Occup Health 2018; 15(2): 165-75. (Persian)
7. Yunesian M, Aghaei M. Exposure Assessment to Environmental Pollutants in Human Health Risk Assessment Studies; Overview on New Approaches. J Health 2019; 10(2): 138-55. (Persian) [DOI:10.29252/j.health.10.2.138]
8. Marika B, Carl Gustaf E, Lars J. Human Exposure Assessment; an Introduction. World Health Organization, 2001, 196.
9. WHO. Human Risk Assessment Prepared by the Edinburgh Centre for Toxicology. UNEP/IPCS. Training Module No. 3 Section A, 1999, 1-106.
10. Fesahat M, Azimzadeh HR, Nejadkoorki F, et al. Measuring Air Pollutants in the Tile Industry and Providing Pollution Reduction Solutions (Case Study: Tile Factory located in Jahan Abad Meybod Industrial city). Second National Conference on Environmental Health, Health and Environment 2015. (Available from: URL: https://www.civilica.com/Paper-HYGIENE02- HYGIENE02_075.html). (Persian)
11. Tikul N, Srichandr P. Assessing the Environmental Impact of Ceramic Tile Production in Thailand. J Ceram Soc Jpn 2010; 118(1382): 887-94. [DOI:10.2109/jcersj2.118.887]
12. Fonseca AS, Maragkidou A, Viana M, et al. Process-Generated Nanoparticles from Ceramic Tile Sintering: Emissions, Exposure and Environmental Release. Sci Total Environ 2016; 565: 922-32. [DOI:10.1016/j.scitotenv.2016.01.106]
13. De la Campa AM, Jesús D, GonzálezCastanedo Y, et al. High Concentrations of Heavy Metals in PM from Ceramic Factories of Southern Spain. Atmos Res 2010; 96(4): 633-44. [DOI:10.1016/j.atmosres.2010.02.011]
14. Siyahati Ardakani G, Mirsanjari M, Azimzadeh H, et al. Ecological Risk Assessment Of Heavy Metals In Topsoil Around Major Industries Of Ardakan City. J Toloo-e-behdasht 2019; 17(6): 95-110. (Persian) [DOI:10.18502/tbj.v17i6.501]
15. DS/ISO 9096:2017, Stationary Source Emissions - Manual Determination of Mass Concentration of Particulate Matter, 2017. Available from: https://webstore.ansi.org/Standards/DS/DSISO90962017.
16. Kalhor M, Ghaleh Askari S, Bozorgi M. AERMET Performance in Evaluation of Boundary Layer Parameters and Its Effect on Carbon Monoxide Concentration Outputs in AERMOD Model Compared to Upper Air Data. Iran J Health Environ 2018; 11(3): 365-76. (Persian)
17. Mohamad N, Latif MT, Khan MF. Source Apportionment and Health Risk Assessment of PM10 in a Naturally Ventilated School in a Tropical Environment. Ecotoxicol Environ Safe 2016; 124: 351-62. [DOI:10.1016/j.ecoenv.2015.11.002]
18. U S Environmental Protection Agency. Quality Assurance Handbook for Air Pollution Measurement Systems Volume II Ambient Air Quality Monitoring Program, EPA Publication EPA-454/B-13-003, 2013, 744.
19. Xu X, Lu X, Han X, et al. Ecological and Health Risk Assessment of Metal in Resuspended Particles of Urban Street Dust from an Industrial City in China. Curr Sci 2015; 108(1): 72-9.
20. Mohammed AM. Estimation of PM10 Health Impacts on Human within Urban Areas of Makkah city, KSA. [Preprints] 2017; 1-11. [DOI:10.20944/preprints201712.0089.v1]
21. Ghanavati N. Human Health Risk Assessment of Heavy Metals in Street Dust in Abadan. Iran J Health & Environ 2018; 11(1): 63-74. (Persian)
22. Mejari M, Shafie Pour M, Pardakhti A. Estimating Air Pollution Concentrations in a City Bus Terminal. Environ Sci 2015; 13(1): 125-30. (Persian)
23. Noorpoor A, Kazemi Shahabi N. Dispersion Modeling of Air Pollutants from the Ilam Cement Factory Stack. J Civ Env Eng 2014; 44.1(74): 107-16. (Persian)
24. Dejene A, Francine H. Gaussian Dispersion Model to Estimate the Dispersion of Particulate Matters (Pm2.5) and Sulfur Dioxide (SO2) Concentrations on Tribal Land, Oklahoma. Am J Environ Sci 2015; 11(6): 440-49. [DOI:10.3844/ajessp.2015.440.449]
25. Omidi Khaniabadi Y, Emaeili SH, Goudarzi GH, et al. Assessment of Particulate Matter Dispersion Using Gaussian Plume Model: A Case Study of Doroud Cement Factory. J Knowl Health 2018; 12(4): 16-25. (Persian)
26. Alizadehdakhel A, Ghavidel A, Panahandeh M. CFD Modeling of Particulate Matter Dispersion from Kerman Cement Plant. Iran J Health Environ 2010; 3(1): 67-74. (Persian)
27. Akbari A, Borhandiani S. An Evaluation of Pollutant Gases Outlet Cement Factory Behbahan and Compared with the Standard. 1th National Conference on Planning and Environmental Hamadan Islamic Azad University. 2011; 1: 1-8. (Persian)
28. Khebri Z, Mousavian Nadoushan N, Nezhadkurki F, et al. Effect of Digital Elevation Model in Air Pollution Modeling Using AERMOD. RS GIS Nat Res 2014; 4(4): 25-33. (Persian)
29. Abbasi Chaleshtori L, Nejadkoorki F, Ashrafi KH. Performance of AERMOD Under Different Building Forms and Dimensions. Environ Sci 2015; 13(1): 15-24. (Persian)
30. Hall DJ, Spanton AM, Dunkerley F, et al. An Inter-Comparison of the AERMOD, ADMS and ISC Dispersion Models for Regulatory Applications. 2001 May. 28-31, Belgirate, Italy. Ispra: Joint Research Centre Environment Institute, 2001.
31. Mokhtar MM, Hassim MH, Taib RM. Health Risk Assessment of Emissions from a CoalFired Power Plant Using AERMOD Modelling. Process Saf Environ 2014; 92(5): 476-85. [DOI:10.1016/j.psep.2014.05.008]
32. Omidi Khaniabadi Y, Rashidi R, Godarzi G, et al. Measurement of Mass Emission Values of Gaseous Pollutants from the Stack of Doroud Cement Plant. J Health Field 2014; 2(2): 36-42. (Persian)
33. Akhbari R, Amadeh H. Application of Pollution Haven Hypothesis in Identifying Dirty Industries Evidence of Iran-China Commercial Relationship. J Environ Sci Tech 2017; 19(2): 15-32. (Persian)
34. Nourmoradi H, Omidi khaniabadi Y, Goudarzi G, et al. Investigation on the Dust Dispersion (PM10 and PM2.5) by Doroud Cement Plant and Study of Its Individual Exposure Rates. J Ilam Univ Med Sci 2016; 24(1): 64-75. (Persian) [DOI:10.18869/acadpub.sjimu.24.1.64]
35. Noferesti AR, Atabi F, Nouri J, et al. Predicting the Mortality Rate Due to Particulate Matters Using AirQ Software and Health Risk Assessment in the City of Sanandaj. J Environ Sci Tech 2019; 21(2): 211-26. (Persian)
36. Mohseni Bandpi A, Eslami A, Shahsavani A, et al. Watersoluble and Organic Extracts of Ambient PM2. 5 in Tehran Air: Assessment of Genotoxic Effects on Human Lung Epithelial Cells (A549) by the Comet Assay. Toxin Rev 2017; 36(2): 116-24. [DOI:10.1080/15569543.2016.1259634]
37. Kermani M, Farzadkia M, Rezaei Kalantari R, et al. Assessment Risk of Heavy Metals in Particulate Matter Smaller than 10 Microns on Tehran's Kahrizak Compost Complex Workers in Winter 2016. Iran Occup Health 2018; 15(2): 165-75. (Persian)
38. Yunesian M, Aghaei M. Exposure Assessment to Environmental Pollutants in Human Health Risk Assessment Studies; Overview on New Approaches. J Health 2019; 10(2): 138-55. (Persian) [DOI:10.29252/j.health.10.2.138]
39. Marika B, Carl Gustaf E, Lars J. Human Exposure Assessment; an Introduction. World Health Organization, 2001, 196.
40. WHO. Human Risk Assessment Prepared by the Edinburgh Centre for Toxicology. UNEP/IPCS. Training Module No. 3 Section A, 1999, 1-106.
41. Fesahat M, Azimzadeh HR, Nejadkoorki F, et al. Measuring Air Pollutants in the Tile Industry and Providing Pollution Reduction Solutions (Case Study: Tile Factory located in Jahan Abad Meybod Industrial city). Second National Conference on Environmental Health, Health and Environment 2015. (Available from: URL: https://www.civilica.com/Paper-HYGIENE02- HYGIENE02_075.html). (Persian)
42. Tikul N, Srichandr P. Assessing the Environmental Impact of Ceramic Tile Production in Thailand. J Ceram Soc Jpn 2010; 118(1382): 887-94. [DOI:10.2109/jcersj2.118.887]
43. Fonseca AS, Maragkidou A, Viana M, et al. Process-Generated Nanoparticles from Ceramic Tile Sintering: Emissions, Exposure and Environmental Release. Sci Total Environ 2016; 565: 922-32. [DOI:10.1016/j.scitotenv.2016.01.106]
44. De la Campa AM, Jesús D, GonzálezCastanedo Y, et al. High Concentrations of Heavy Metals in PM from Ceramic Factories of Southern Spain. Atmos Res 2010; 96(4): 633-44. [DOI:10.1016/j.atmosres.2010.02.011]
45. Siyahati Ardakani G, Mirsanjari M, Azimzadeh H, et al. Ecological Risk Assessment Of Heavy Metals In Topsoil Around Major Industries Of Ardakan City. J Toloo-e-behdasht 2019; 17(6): 95-110. (Persian) [DOI:10.18502/tbj.v17i6.501]
46. DS/ISO 9096:2017, Stationary Source Emissions - Manual Determination of Mass Concentration of Particulate Matter, 2017. Available from: https://webstore.ansi.org/Standards/DS/DSISO90962017.
47. Kalhor M, Ghaleh Askari S, Bozorgi M. AERMET Performance in Evaluation of Boundary Layer Parameters and Its Effect on Carbon Monoxide Concentration Outputs in AERMOD Model Compared to Upper Air Data. Iran J Health Environ 2018; 11(3): 365-76. (Persian)
48. Mohamad N, Latif MT, Khan MF. Source Apportionment and Health Risk Assessment of PM10 in a Naturally Ventilated School in a Tropical Environment. Ecotoxicol Environ Safe 2016; 124: 351-62. [DOI:10.1016/j.ecoenv.2015.11.002]
49. U S Environmental Protection Agency. Quality Assurance Handbook for Air Pollution Measurement Systems Volume II Ambient Air Quality Monitoring Program, EPA Publication EPA-454/B-13-003, 2013, 744.
50. Xu X, Lu X, Han X, et al. Ecological and Health Risk Assessment of Metal in Resuspended Particles of Urban Street Dust from an Industrial City in China. Curr Sci 2015; 108(1): 72-9.
51. Mohammed AM. Estimation of PM10 Health Impacts on Human within Urban Areas of Makkah city, KSA. [Preprints] 2017; 1-11. [DOI:10.20944/preprints201712.0089.v1]
52. Ghanavati N. Human Health Risk Assessment of Heavy Metals in Street Dust in Abadan. Iran J Health & Environ 2018; 11(1): 63-74. (Persian)
53. Mejari M, Shafie Pour M, Pardakhti A. Estimating Air Pollution Concentrations in a City Bus Terminal. Environ Sci 2015; 13(1): 125-30. (Persian)
54. Noorpoor A, Kazemi Shahabi N. Dispersion Modeling of Air Pollutants from the Ilam Cement Factory Stack. J Civ Env Eng 2014; 44.1(74): 107-16. (Persian)
55. Dejene A, Francine H. Gaussian Dispersion Model to Estimate the Dispersion of Particulate Matters (Pm2.5) and Sulfur Dioxide (SO2) Concentrations on Tribal Land, Oklahoma. Am J Environ Sci 2015; 11(6): 440-49. [DOI:10.3844/ajessp.2015.440.449]
56. Omidi Khaniabadi Y, Emaeili SH, Goudarzi GH, et al. Assessment of Particulate Matter Dispersion Using Gaussian Plume Model: A Case Study of Doroud Cement Factory. J Knowl Health 2018; 12(4): 16-25. (Persian)
57. Alizadehdakhel A, Ghavidel A, Panahandeh M. CFD Modeling of Particulate Matter Dispersion from Kerman Cement Plant. Iran J Health Environ 2010; 3(1): 67-74. (Persian)
58. Akbari A, Borhandiani S. An Evaluation of Pollutant Gases Outlet Cement Factory Behbahan and Compared with the Standard. 1th National Conference on Planning and Environmental Hamadan Islamic Azad University. 2011; 1: 1-8. (Persian)
59. Khebri Z, Mousavian Nadoushan N, Nezhadkurki F, et al. Effect of Digital Elevation Model in Air Pollution Modeling Using AERMOD. RS GIS Nat Res 2014; 4(4): 25-33. (Persian)
60. Abbasi Chaleshtori L, Nejadkoorki F, Ashrafi KH. Performance of AERMOD Under Different Building Forms and Dimensions. Environ Sci 2015; 13(1): 15-24. (Persian)
61. Hall DJ, Spanton AM, Dunkerley F, et al. An Inter-Comparison of the AERMOD, ADMS and ISC Dispersion Models for Regulatory Applications. 2001 May. 28-31, Belgirate, Italy. Ispra: Joint Research Centre Environment Institute, 2001.
62. Mokhtar MM, Hassim MH, Taib RM. Health Risk Assessment of Emissions from a CoalFired Power Plant Using AERMOD Modelling. Process Saf Environ 2014; 92(5): 476-85. [DOI:10.1016/j.psep.2014.05.008]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله طب جنوب می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian South Medical Journal

Designed & Developed by: Yektaweb