Volume 23, Issue 1 (Iranian South Medical Journal 2020)                   Iran South Med J 2020, 23(1): 1-13 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rostami M, Amini K, Kheirkhah B. Detection of Heavy Metals Resistance Genes and Effects of Iron Nanoparticles on the Gene Expression in Pseudomonas Aeruginosa Using Real-Time PCR. Iran South Med J 2020; 23 (1) :1-13
URL: http://ismj.bpums.ac.ir/article-1-1238-en.html
1- Department of Microbiology, School of Basic Sciences, Sirjan Branch, Islamic Azad University, Sirjan, Iran, Iran
2- Department of Microbiology, School of Basic Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran , dr_kumarss_amini@yahoo.com
3- Department of Microbiology, school of Basic Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
Abstract:   (3374 Views)
Background: Heavy metals enter the environment through industrial activities and contaminate natural ecosystems. Identification of heavy metal-resistant bacteria plays an important role in environmental
pollution and ultimately cleansing it. Therefore, the aim of the present study was to isolate the resistant genes of Pseudomonas aeruginosa and the effects of nanoparticles on gene expression using real-time PCR.
Materials and Methods In this descriptive cross-sectional study, 60 isolates of P. aeruginosa were studied. Frequency of czr gene was determined by PCR. Also, the effects of iron nanoparticles on czr gene expression were evaluated by real-time PCR after RNA extraction.
Results: In this study, 25 isolates were carriers of czr gene. Also, iron nanoparticles could reduce the
expression of the heavy metal resistance gene in P. aeruginosa in vitro.
Conclusion: This study showed that the resistance of different species of P. aeruginosa to the heavy metal cadmium is different.
 
Full-Text [PDF 736 kb]   (962 Downloads)    
Type of Study: Original | Subject: Microbiology and Immunology
Received: 2019/01/12 | Accepted: 2019/11/3 | Published: 2020/03/28

References
1. Eslami A, Nemati R. Removal of Heavy Metal from Aqueous Environments Using Bioremediation Technology-Review. J Health Field 2015; 3(2): 43-51. (Persian) [Article]
2. Dixit R, Malaviya D, Pandiyan K, et al. Bioremediation of Heavy Metals from Soil and Aaquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability 2015; 7(2): 2189-212. [DOI:10.3390/su7022189]
3. Bachman G, Miller W. Iron Chelate Inducible Iron/Manganese Toxicity in Zonal Geranium. J Plant Nutr 1995; 18(9): 1917-29. [DOI:10.1080/01904169509365033]
4. Yguerabide J, Yguerabide EE. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and their use as Tracer Labels in Clinical and Biological Applications: II. Experimental characterization. Anal Biochem 1998; 262(2): 157-76. [DOI:10.1006/abio.1998.2760]
5. Emory SR, Nie SH. Screening and Enrichment of Metal Nanoparticles with Novel Optical Properties. J Phys Chem B 1998; 102(3): 493-7. [DOI:10.1021/jp9734033]
6. Kneipp K, Wang Y, Kneipp H, et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys Rev Lett 1997; 78(9): 1667. [DOI:10.1103/PhysRevLett.78.1667]
7. Martin MN, Basham JI, Chando P, et al. Charged Gold Nanoparticles in Non-polar Solvents: 10-min Synthesis and 2D SelfAssembly. Langmuir 2010; 26(10): 7410-7. [DOI:10.1021/la100591h]
8. Van der Lelie D, Hassan MT, Springael D, et al. Identification of a Gene Cluster, czr, Involved in Cadmium and Zinc Resistance in Pseudomonas Aeruginosa. Gene 1999; 238(2): 417-25. [DOI:10.1016/S0378-1119(99)00349-2]
9. Connie M, Lehman D. Textbook of Diagnostic Microbiology. 6th ed. Netherlands: Elsevier, 2018, 1088.
10. Chellaiah ER. Cadmium (Heavy Metals) Bioremediation by Pseudomonas Aeruginosa: A Minireview. Appl Water Sci 2018; 8: 154. [DOI:10.1007/s13201-018-0796-5]
11. Fazeli H, Moslehi V, Irajian GH, et al. Determination of Drug Resistance Patterns and Detection of bla-VIM Gene in Pseudomonas Aeruginosastrains Isolated from Burned Patients in the Emam Mosa Kazem hospital, Esfahan, Iran (2008-9). Iran J Med Microbiol 2010; 3(4): 1-8. (Persian) [Link]
12. Guo H, Luo S, Chen L, et al. Bioremediation of Heavy Metals by Growing Hyperaccumulaor Endophytic Bacterium Bacillus sp. L14 . Bioresour technol 2010; 101(22): 8599-605. [DOI:10.1016/j.biortech.2010.06.085]
13. Shakibaie MR, Harati A. Metal Accumulation in Pseudomonas Aeruginosa Occur in the form of Nanoparticles on the Cell Surface. Iran J Biotech 2004; 2(1): 55-9. (Persian) [Link]
14. Soltani NS, Rabbani KM, Emtiazi G. Analysis of Zinc Resistance Gene in Zinc and Zinc Oxide Nanoparticles Resistant Pseudomonas Stutzeri SEE-1 Isolated from Soil. J Microb World 2015; 8(2): 139-47. (Persian) [Link]
15. Shirdam R, Khanafari A, Tabatabaee A. Cadmium, Nickel and Vanadium Accumulation by Three Strains of Marine Bacteria. Iran J Biotech 2006; 4(3): 180-7. (Persian) [Link]
16. Tyrrell C, Cohen PS. Escherichia Coli at the Intestinal Mucosal Surface, in Virulence Mechanisms of Bacterial Pathogens, 4th ed. American Society of Microbiology, 2007, 175-96. [DOI:10.1128/9781555815851.ch12]
17. Mihani F, Khosravi A. Isolation of Pseudomonas Aeruginosastrains Producing Metallo beta Lactamases from Infections in Burned Patients and Identification of blaIMP and blaVIMgenes by PCR. Iran J Med Microbiol 2007; 1(1): 23-31. (Persian) [Link]
18. Kermani AN, Ghasemi M, Khosravan A, et al. Cadmium Bioremediation by Metal-Resistant Mutated Bacteria Isolated from Active Sludge of Industrial Effluent. J Environ Health Sci Eng 2010; 7(4): 279-86. (Persian) [Link]
19. Ghaemmaghami HS, Salehi M, Mozaffar Sabet A. Study of Genes Encoding Resistance to Cadmium and Nickel in Pseudomonas Aeruginosa Strains Isolated from Wastewater Tehran. New Cell Mol Biotechnol J 2016; 6(24): 51-6. (Persian) [Link]
20. Mustapha MU, Sun P, Song Y, et al. Removal of Heavy Metals from Electroplating Wastewater Using Bacteria. AIP Conf Proc 2010; 1251: 109-12. [Link]
21. Hassen A, Saidi N, Cherif M, et al. Effects of Heavy Metals on Pseudomonas Aeruginosa and Bacillus Thuringiensis. Bioresource Technol 1998; 65(1-2): 73-82. [DOI:10.1016/S0960-8524(98)00011-X]
22. Aruoja V, Dubourguier HC, Kasemets K, et al. Toxicity of Nanoparticles of CuO ,ZnO and TiO2 to Microalgae Pseudokirchneriella Subcapitata. Sci Total Environ 2009; 407(4): 1461-8. [DOI:10.1016/j.scitotenv.2008.10.053]
23. Beranová J, Seydlová G, Kozak H, et al. Sensitivity of Bacteria to Diamond Nanoparticles of Various size Differs in GramPositive and Gram-Negative Cells. FEMS Microbiol Lett 2014; 351(2): 179-86. [DOI:10.1111/1574-6968.12373]
24. Bogdanović U, Vodnik V, Mitrić M, et al. Nanomaterial with High Antimicrobial Efficacy-- Copper/Polyaniline Nanocomposite. ACS Appl Mater Interfaces 2015; 7(3): 1955-66. [DOI:10.1021/am507746m]
25. Bondarenko O, Ivask A, Käkinen A, et al. Sub-Toxic Effects of CuO Nanoparticles on Bacteria: kinetics, Role of Cu Ions and Possible Mechanisms of Action. Environ Pollut 2012; 169: 81-9. [DOI:10.1016/j.envpol.2012.05.009]
26. Pelgrift RY, Friedman AJ. Nanotechnology as a Therapeutic Tool to Combat Microbial Resistance. Adv Drug Deliv Rev 2013; 65(13- 14): 1803-15. [DOI:10.1016/j.addr.2013.07.011]
27. Landini P, Antoniani D, Burgess JG, et al. Molecular Mechanisms of Compounds Affecting Bacterial Biofilm Formation and Dispersal. Appl Microbiol Biotechnol 2010; 86(3): 813-23. [DOI:10.1007/s00253-010-2468-8]
28. Sutherland I. Biofilm Exopolysaccharides: A Strong and Sticky Framework. Microbiology 2001; 147(1): 3-9. [DOI:10.1099/00221287-147-1-3]
29. Jones N, Ray B, Ranjit KT, et al. Antibacterial Activity of ZnO Nanoparticle Suspensions on a Broad Spectrum of Microorganisms. FEMS Microbiol Lett 2008; 279(1): 71-6. [DOI:10.1111/j.1574-6968.2007.01012.x]
30. Amjady F, Golestani EB, Karimi F. An Investigation of the Effect of Copper Nanoparticles on E. Coli Genome by RAPD Molecular Markers. J Mol Cell Res 2016; 28(4): 475-87. (Persian) [Link]
31. Naddafi K, Zare MR, Younesian M, et al. Bioassay for Toxicity Assessment of Zinc Oxide and Titanium Oxide to Escherichia Coli ATCC 35218 and Staphylococcus Aureus ATCC 25923 Bacteria. Iran J Health Environ 2011; 4(2): 171-80. (Persian) [Link]
32. Shafienia H, Shahhosseiny MH, Bayat M, et al. Evaluation of prevalence of Pseudomonas aeruginosa infection in operated patients with Chronic Sinusitis in Rasoule Akram Hospital by Polymerase Chain Reaction (PCR). Iran South Med J 2015; 18(4): 720-8. (Persian) [Link]

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian South Medical Journal

Designed & Developed by: Yektaweb