[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 24, Issue 2 (Iranian South Medical Journal 2021) ::
Iran South Med J 2021, 24(2): 134-159 Back to browse issues page
Determination of some Nutraceutical Compounds, Amino Acids and Fatty acids Present in the Extracts of Sargasum boveanum Algae Obtained from the Coastal Waters of Central Bushehr, Iran
Tahere Khalifeh1 , Amir Vazirizadeh2, Gholam Hosein Mohebbi 3, Ali Reza Barmak1, Amir Hosein Darabi4
1- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
2- Department of Marine Biotechnology, The Persian Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran
3- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , mohebbihsn@yahoo.com
4- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
Abstract:   (1454 Views)
Background: Marine algae have become very important in various fields of food, medicine, and cosmetics, due to their unique functional and nutraceutical properties, as well as their amino acids, fatty acids, vitamins, and trace element contents. This study was aimed to identify the chemical compositions and to determine some physicochemical and nutraceutical properties of the brown algae Sargasom boveanum from the
Bushehr coasts.
Materials and Methods: The total protein content, amino acid, and fatty acid profiles, as well as chemical compositions, were respectively, determined by Kjeldahl, HPLC-UV, GC-FID, and GC-MS methods.
Results: The total protein content was 12.5%. Among the 17 identified amino acids, the highest amount was related to lysine, followed by glycine and aspartic acid. The essential, semi-essential, and non-essential amino acid levels were 48.1, 24.6, and 27.5%, respectively. Among the 18 identified fatty acids, the palmitic acid, caproic acid, and myristic acid had respectively, the highest values. The results of mass spectrometry showed the presence of 25 compositions from different groups of phenolic, quinoline, isoquinoline, indole, pyrazole, oxadiazole, and pyrrole in the algael extract.
Conclusion: Due to the richness in essential and semi-essential amino acids, beneficial fatty acids, and unique secondary metabolites of the Persian Gulf Sargassum algae, it can be considered as a potential functional food and a perfect nutraceutical package.
Keywords: algae, Sargasum boveanum, amino acid, fatty acid, secondary metabolites, nutraceutical, Persian Gulf.
Full-Text [PDF 906 kb]   (390 Downloads)    
Type of Study: Original | Subject: General
Received: 2020/10/11 | Accepted: 2021/05/20 | Published: 2021/06/1
1. Nabipour I. Marine Medicine. 1 st ed. Bushehr: Bushehr Univ Med Sci, 2008, 157. (Persian)
2. Taskin E, Ozturk M, Kurt O. Antibacterial Activities Of Some Marine Algae From The Aegean Sea (Turkey). Afr J Biotechnol 2007; 6(24): 2746-51. [DOI:10.5897/AJB2007.000-2439]
3. Sohrabipor J, Nejadsatari T, Assadi M, et al. The Marine Algae Of The Southern Coast Of Iran, Persian Gulf, Lengeh Area. Iran J Botany 2004; 10(2): 83-93.
4. Tüney I, Cadirc BH, Ünal D, et al. Antimicrobial Activities Of The Extracts Of Marine Algae From The Coast Of Urla (Izmir, Turkey). Turk J Biol 2006; 30(3): 171-5.
5. Rhein-Knudsen N, Ale MT, Meyer AS. Seaweed Hydrocolloid Production: An Update On Enzyme Assisted Extraction And Modification Technologies. Mar Drugs 2015; 13(6): 3340-59. [DOI:10.3390/md13063340] [PMID] [PMCID]
6. Stévant P, Rebours C, Chapman A. Seaweed Aquaculture In Norway: Recent Industrial Developments And Future Perspectives. Aquacult Int 2017; 25(4): 1373-90. [DOI:10.1007/s10499-017-0120-7]
7. Dembitsky VM, Maoka T. Allenic And Cumulenic Lipids. Prog Lipid Res 2007; 46(6): 328-75. [DOI:10.1016/j.plipres.2007.07.001] [PMID]
8. Farbodnia T. Algae Biology. Urmia: Urmia Univ, 1997, 222. (Persian)
9. Dawczynski C, Schubert R, Jahreis G. Amino Acids, Fatty Acids, And Dietary Fibre In Edible Seaweed Products. Food Chem 2007; 103(3): 891-9. [DOI:10.1016/j.foodchem.2006.09.041]
10. Telles CBS, Mendes-Aguiar C, Fidelis GP, et al. Immunomodulatory Effects And Antimicrobial Activity Of Heterofucans From Sargassum Filipendula. J Applied Phycol 2018; 30(1): 569-78. [DOI:10.1007/s10811-017-1218-z]
11. Baleta FN, Bolaños JM, Ruma OC, et al. Phytochemicals Screening And Antimicrobial Properties Of Sargassum Oligocystum And Sargassum Crassifolium Extracts. J Med Plant Stud 2017; 5: 382-7.
12. Williamson G. The Role Of PolyphenolsIn Modern Nutrition. Nutr Bull 2017; 42(3): 226-35. [DOI:10.1111/nbu.12278] [PMID] [PMCID]
13. Khademvatan S, Gharavi MJ, Akhlaghi L, et al. Induction Of Apoptosis By Miltefosine In Iranian Strain Of Leishmania Infantum Promastigotes. Iran J Parasitol 2009; 4(2): 23-31.
14. Sapkale AP, Thorat Mangesh S, Vir PR, et al. Nutraceuticals - Global Status And Applications. A Review. Int J Pharma Chem Sci 2012; 1(3): 1166-81.
15. Ahmad I, Ahmad Khan MS, Cameotra SS. Quality Assessment Of Herbal Drugs And Medicinal Plant Products. Enc Anal Chem 2014; Doi: Https://Doi.Org/10.1002/9780470027318.A9 946 [DOI:10.1002/9780470027318.a9946]
16. Srivastava N, Saurav K, Mohanasrinivasan V, et al. Antibacterial Potential Of Macroalgae Collected From The Madappam Coast, India. Birt J Pharmacol Toxicol 2010; 1(2): 72-6.
17. Shannon E, Abu-Ghannam N. Seaweeds As Nutraceuticals For Health And Nutrition. Phycologia 2019; 58(5): 563-77. [DOI:10.1080/00318884.2019.1640533]
18. Zandi K, Ahmadzadeh S, Tajbakhsh S, et al. Anticancer Activity Of Sargassum Oligocystum Water Extract Against Human Cancer Cell Lines. Eur Rev Med Pharmacol Sci 2010; 14(8): 669-73.
19. Sasikala M, Indumathi E, Radhika S, et al. Effect Of Seaweed Extract (Sargassum Tenerrimum) On Seed Germination And Growth Of Tomato Plant. Int J Chemtech Res 2016; 9(9): 285-93.
20. Elnabris KJ, Elmanama AA, Chihadeh WN. Antibacterial Activity Of Four Marine Seaweeds Collected From The Coast Of Gaza Strip, Palestine. Mesopot J Mar Sci 2013; 28(1): 81-92.
21. Blight EG, Dyer WJ. A Rapid Method Of Total Lipid Extraction And Purification. Can J Biochem Physiol 1959; 37(8): 911-7. [DOI:10.1139/o59-099] [PMID]
22. Kishimoto T, Wanikawa A, Kagami N, et al. Analysis Of Hop-Derived Terpenoids In Beer And Evaluation Of Their Behavior Using The Stir Bar Sorptive Extraction Method With GC-MS. J Agric Food Chem 2005; 53(12): 4701-7. [DOI:10.1021/jf050072f] [PMID]
23. Gargallo S, Calsamiglia S, Ferret A. Technical Note: A Modified Three-Step In Vitro Procedure To Determine Intestinal Digestion Of Proteins. J Anim Sci 2006; 84(8): 2163-7. [DOI:10.2527/jas.2004-704] [PMID]
24. Liu HJ, Chang BY, Yan HW, et al. Determination Of Amino Acids In Food And Feed By Derivatization With 6-Aminoquionolyl-Nhydroxysuccinimidyl Carbamate And Reversed-Phase Liquid Chromatographic Separation. J AOAC Int 1995; 78(3): 736-43. [DOI:10.1093/jaoac/78.3.736]
25. Blunt JW, Copp BR, Munro MHG, et al. Marine Natural Products. Nat Prod Rep 2006; 23: 26-78. [DOI:10.1039/b502792f] [PMID]
26. Gouveia L, Batista AP, Sousa I, et al. Microalgae In Novel Food Products. In Food Chemistry Research. Nova Science Publishers: New York, NY, USA 2008; 75-112.
27. Becker EW. Micro-Algae As A Source Of Protein. Biotechnol Adv 2007; 25(2): 207-10. [DOI:10.1016/j.biotechadv.2006.11.002] [PMID]
28. Tibbetts SM, Milley JE, Lall SP. Nutritional Quality Of Some Wild And Cultivated Seaweeds: Nutrient Composition, Total Phenolic Content And In Vitro Digestibility. J Appl Phycol 2016; 28: 3575-85. [DOI:10.1007/s10811-016-0863-y]
29. Fleurence J, Morançais M, Dumay J, et al. What Are The Prospects For Using Seaweed In Human Nutrition And For Marine Animals Raised Through Aquaculture?. Trends Food Sci Technol 2012; 27(1): 57-61. [DOI:10.1016/j.tifs.2012.03.004]
30. Berna K, Semra C, Gamze T, et al. Seaweeds For Food And Industrial Applications. Intech 2013; 736-751.
31. Černá M. Seaweed Proteins And Amino Acids As Nutraceuticals. Adv Food Nutr Res 2011; 64: 297-312. [DOI:10.1016/B978-0-12-387669-0.00024-7] [PMID]
32. Marsham S, Scott GW, Tobin ML. Comparison Of Nutritive Chemistry Of A Range Of Temperate Seaweeds. Food Chem 2007; 100(4): 1331-6. [DOI:10.1016/j.foodchem.2005.11.029]
33. Burtin P. Nutritional Value Of Seaweeds. Elect J Environ Agric Food Chem 2003; 2(4): 498-503.
34. Fleurence J, Morançais M, Dumay J. Seaweed Proteins. In: Proteins In Food Processing. 2 nd ed. Elsevier, 2017, 245-62. [DOI:10.1016/B978-0-08-100722-8.00010-3]
35. Desmorieux H, Hernandez F. Biochemical And Physical Criteria Of Spirulina After Different Drying Processes, Proceedings Of The 14th International Drying Symposium (IDS 2004). 2004 Aug. 22-25, São Paulo, Brazil, 900-7.
36. Devi GK, Thirumaran G, Manivannan K, et al. Element Composition Of Certain Seaweeds From Gulf Of Mannar Marine Biosphere Reserve; Southeast Coast Of India. World J Dairy Food Sci 2009; 4(1): 46-55.
37. Wells ML, Potin P, Craigie JS, et al. Algae As Nutritional And Functional Food Sources: Revisiting Our Understanding. J Appl Phycol 2017; 29(2): 949-82. [DOI:10.1007/s10811-016-0974-5] [PMID] [PMCID]
38. Pulz O, Gross W. Valuable Products From Biotechnology Of Microalgae. Appl Microbiol Biotechnol 2004; 65(6): 635-48. [DOI:10.1007/s00253-004-1647-x] [PMID]
39. Bleakley S, Hayes M. Algael Proteins: Extrac-tion, Application, And Challenges Concerning Production. Foods 2017; 6(5): 33. [DOI:10.3390/foods6050033] [PMID] [PMCID]
40. Ennamany R, Saboureau D, Mekideche N, et al. Secma 1, A Mitogenic Hexapeptide From Ulva Algeae Modulates The Production Of Proteoglycans And Glycosaminoglycans In Human Foreskin Fibroblast. Hum Exp Toxicol 1998; 17(1): 18-22. https://doi.org/10.1191/096032798678907801 [DOI:10.1177/096032719801700103] [PMID]
41. Stolzenberg-Solomon RZ, Miller ER, Maguire MG, et al. Association Of Dietary Protein Intake And Coffee Consumption With Serum Homocysteine Concentrations In An Older Population. Am J Clin Nutr 1999; 69(3): 467-75. [DOI:10.1093/ajcn/69.3.467] [PMID]
42. Macartain P, Gill CI, Brooks M, et al. Nutritional Value Of Edible Seaweeds. Nutr Rev 2007; 65(12 Pt 1): 535-43. [DOI:10.1111/j.1753-4887.2007.tb00278.x]
43. Alwaleed EA. Biochemical Composition And Nutraceutical Perspectives Red Sea Seaweeds. Am J Appl Sci 2019; 16(12): 346-354. [DOI:10.3844/ajassp.2019.346.354]
44. Kumar V, Kaladharanl P. Amino Acids In The Seaweeds As An Alternate Source Of Protein For Animal Feed. J Mar Biol Assoc India 2007; 49(1): 35-40.
45. Ishakani AH, Vadher KH, Kadri RM, et al. Amino Acid And Fatty Acid Composition Of Seaweeds (Ulva Reticulata And Sargassum Cinctum): A Novel Natural Source Of Nutrition. Int J Pure Appl Biosci 2017; 5(5): 1210-6. [DOI:10.18782/2320-7051.5233]
46. Galland-Irmouli AV, Fleurence J, Lamghari R, et al. Nutritional Value Of Proteins From Edible Seaweed Palmaria Palmata (Dulse). J Nutr Biochem 1999; 10(6): 353-9. [DOI:10.1016/S0955-2863(99)00014-5]
47. Farhat M, Khan A. Dietary Llysine Requirement Of Fingerling Stinging Catfish, Heteropneustes Fossilis (Bloch) For Optimizing Growth, Feed Conversion, Protein And Lysine Deposition. Aquacult Res 2013; 44(4): 523-33. [DOI:10.1111/j.1365-2109.2011.03054.x]
48. Raja PK, Jarowski CI. Utility Of Fasting Essential Amino Acid Plasma Levels In Formolatian Of Nutritionally Adequate Diets. Lowering Of Human Plasma Cholesterol And Triglyceride Levels By Lysine And Tryptophan Supplementation. J Pharm Sci 1975; 64(4): 691-2. [DOI:10.1002/jps.2600640427] [PMID]
49. Wu G. Functional Amino Acids In Growth, Reproduction, And Health. Adv Nutr 2010; 1(1): 31-7. [DOI:10.3945/an.110.1008] [PMID] [PMCID]
50. Lewis RM, Godfrey KM, Jackson AA, et al. Low Serine Hydroxymethyltransferase Activity In The Human Placenta Has Important Implications For Fetal Glycine Supply. J Clin Endocrinol Metab 2005; 90(3): 1594-8. [DOI:10.1210/jc.2004-0317] [PMID]
51. Rajendra S, Lynch JW, Schofield PR. The Glycine Receptor. Pharmacol Ther 1997; 73(2): 121-46. [DOI:10.1016/S0163-7258(96)00163-5]
52. Wu G, Bazer FW, Burghardt RC, et al. Proline And Hydroxyproline Metabolism: Implications For Animal And Human Nutrition. Amino Acids 2011; 40(4): 1053-63. [DOI:10.1007/s00726-010-0715-z] [PMID] [PMCID]
53. Abdul Razak M, Shajahan Begum P, Viswanath B, et al. Multifarious Beneficial Effect Of Nonessential Mino Acid, Glycine: A Review. Oxid Med Cell Longev 2017; 2017: 1716701. [DOI:10.1155/2017/1716701] [PMID] [PMCID]
54. Fleurence J. Seaweed Proteins: Biochemical, Nutritional Aspects And Potential Uses. Trends Food Sci Technol 1999; 10(1): 25-8. [DOI:10.1016/S0924-2244(99)00015-1]
55. Ratana-Arporn P, Chirapart A. Nutritional Evaluation Of Tropical Green Seaweeds Caulerpa Lentillifera And Ulva Reticulata. Kasetsart J Nat Sci 2006; 40(6Suppl): 75-83.
56. Miyashita K, Mikami N, Hosokawa M. Chemical And Nutritional Characteristics Of Brown Seaweed Lipids: A Review. J Funct Foods 2013; 5(4): 1507-17. [DOI:10.1016/j.jff.2013.09.019]
57. Herbreteau F, Coiffard LJM, Derrien A, et al. The Fatty Acid Composition Of Five Species Of Macroalgae. Bot Mar 1997; 40(1): 25-8. [DOI:10.1515/botm.1997.40.1-6.25]
58. Jaswir I, Novirndri D, Salleh HM, et al. Fucoxanthin Extractions Of Brown Seaweeds And Analysis Of Their Lipid Fraction In Methanol. Food Sci Technol Res 2012; 18(2): 251-7. [DOI:10.3136/fstr.18.251]
59. Rohani-Ghadikolaei K, Abdulalian E, Ng WK. Evaluation Of The Proximate, Fatty Acid And Mineral Composition Of Representative Green, Brown And Red Seaweeds From The Persian Gulf Of Iran As Potential Food And Feed Resources. J Food Sci Technol 2012; 49(6): 774-80. [DOI:10.1007/s13197-010-0220-0] [PMID] [PMCID]
60. Perumal B, Chitra R, Maruthupandian A, et al. Nutritional Assessment And Bioactive Potential Of Sargassum Polycystum C. Agardh (Brown Seaweed). India J Geo Mar Sci 2019; 48(4): 492-8.
61. Susanto E, Fahmi AS, Abe M, et al. Lipids, Fatty Acids, And Fucoxanthin Content From Temperate And Tropical Brown Seaweeds. Aquat Procedia 2016; 7: 66-75. [DOI:10.1016/j.aqpro.2016.07.009]
62. Nelson MM, Phleger CF, Nochols PD. Seasonal Lipid Composition In Macroalgae Of The Northeastern Pacific Ocea. Bot Mar 2002; 45(1): 58-65. [DOI:10.1515/BOT.2002.007]
63. Sanchez-Machado DI,Lopez-CervantesJ,LopezHern'Andez J, et al. Fatty Acids, Total Lipid, Protein And Ash Contents Of Processed Edible Seaweeds, Food Chem 2004; 85(3): 439-44. [DOI:10.1016/j.foodchem.2003.08.001]
64. Narayan B, Miyashita K, Hosakawa M. Comparative Evaluation Of Fatty Acid Composition Of Different Sargassum (Fucales, Phaeophyta) Species Harvested From Temperate And Tropical Waters. J Aquat Food Prod Technol 2005; 13(4): 53-70. [DOI:10.1300/J030v13n04_05]
65. Nomura M, Kamogawa H, Susanto E, et al. Seasonal Variations Of Total Lipids, Fatty Acid Composition, And Fucoxanthin Contents Of Sargassum Horneri (Turner) And Cystoseira Hakodatensis (Yendo) From The Northern Seashore Of Japan. J Appl Phycol 2013; 25(4): 1159-69. [DOI:10.1007/s10811-012-9934-x]
66. Silva G, Pereira RB, Valentão P, et al. Distinct Fatty Acid Profile Of Ten Brown Macroalgae. Rev Bras De Farmacogn 2013; 23(4): 608-13. https://doi.org/10.1590/S0102-695X2013005000048 [DOI:10.1590/S0102-695X2011005000094]
67. Chen Z, Xu Y, Liu T, et al. Comparative Studies On The Characteristic Fatty Acid Profiles Of Four Different Chinese Medicinal Sargassum Seaweeds By GC-MS And Chemometrics. Mar Drugs 2016; 14(4): 68. [DOI:10.3390/md14040068] [PMID] [PMCID]
68. Bakar K, Mohamad H, Latip J, et al. Fatty Acids Compositions Of Sargassum Granuliferum And Dictyota Dichotoma And Their Anti-Fouling Activities. J Sustain Sci Manage 2017; 12(2): 8-16.
69. Khotimchenko SV. Fatty Acids Composition Of Seven Sargassum Species. Phytochemistry 1991; 30(8): 2638-41. [DOI:10.1016/0031-9422(91)85113-E]
70. Shaghuli S, Maryamabadi A, Mohebbi GH, et al. Determination Of Fatty Acids Profile And Physicochemical Study Of Sea Lettuce (Ulva Lactuca) Oil From Bushehr City Coasts. Iran South Med J 2017; 20(2): 143-62. (Persian) [DOI:10.29252/ismj.20.2.143]
71. Connor WE. Importance Of N-3 Fatty Acids In Health And Disease. Am J Clin Nutr 2000; 71(1 Suppl): 171S-5S. [DOI:10.1093/ajcn/71.1.171S] [PMID]
72. Benoit SC, Kemp CJ, Elias CF, et al. Palmitic Acid Mediates Hypothalamic Insulin Resistance By Altering PKC- theta Subcellular Localization In Rodents. J Clin Invest 2009; 119(9): 2577-89. [DOI:10.1172/JCI36714] [PMID] [PMCID]
73. Bazes A, Silkina A, Douzanel P, et al. Investigation Of The Antifouling Constituents From The Brown Algae Sargassum Muticum (Yendo) Fensholt. J Appl Psychol 2009; 21(4): 395-403. [DOI:10.1007/s10811-008-9382-9]
74. Wanten GJ, Naber AH. Cellular And Physiological Effects Of Medium-Chain Triglycerides. Mini Rev Med Chem 2004; 4(8): 847-57. [DOI:10.2174/1389557043403503] [PMID]
75. Marten B, Pfeuffer M, Schrezenmeir J. Medium-Chain Triglycerides. Int Dairy J 2006; 16(11): 1374-82. [DOI:10.1016/j.idairyj.2006.06.015]
76. Rego Costa AC, Rosado EL, Soares-Mota M. Influence Of The Dietary Intake Of Medium Chain Triglycerides On Body Composition, Energy Expenditure And Satiety: A Systematic Review. Nutr Hosp 2012; 27(1): 103-8.
77. Yu S, Choi JH, Kim HJ, et al. In Vitro Evidence Of Anti-Inflammatory And Anti-Obesity Effects Of Medium-Chain Fatty Acid-Diacylglycerols. J Microbiol Biotechnol 2017; 27(9): 1617-27. [DOI:10.4014/jmb.1703.03071] [PMID]
78. Decker EA. The Role Of Stereospecific Saturated Fatty Acid Position On Lipid Nutrition. Nutr Rev 1996; 54(4 Pt 1): 108-10. [DOI:10.1111/j.1753-4887.1996.tb03884.x] [PMID]
79. Wong K, Cheung PC. Influence Of Drying Treatment On Three Sargassum Species. J Appl Phycol 2001; 13: 43-50. https://doi.org/10.1023/A:1008188830177 [DOI:10.1023/A:1008149215156]
80. Urbano MG, Goñi I. Bioavailability Of Nutrients In Rats Fed On Edible Seaweeds, Nori (Porphyra Tenera) And Wakame (Undaria Pinnatifida), As A Source Of Dietary Fibre. Food Chem 2002; 76(3): 281-6. [DOI:10.1016/S0308-8146(01)00273-4]
81. Suzuki T, Nakai K, Yoshie Y, et al. Digestibility Of Dietary Fiber In Brown Algae, Kombu, By Rats. Bull Jpn Soc Sci Fish 1993; 59(5): 879-84. https://doi.org/10.2331/suisan.81.879 [DOI:10.2331/suisan.59.879]
82. Gilbert L. The 1994 Health Focuses Trend Report. Des Moines, IA: Health Focus Inc, 1995.
83. Avrelija C, Walter C. Antimicrobial Agents Deriving From Indigenous Plants. Recent Pat Food Nutr Agric 2010; 2(1): 83-92. https://doi.org/10.2174/1876142911002010083 [DOI:10.2174/2212798411002010083] [PMID]
84. Pandita SS, Bhalerao SK, Aher US, et al. Amberlyst A-15: Reusable Catalyst For The Synthesis Of 2, 4, 5-Trisubstituted And 1,2,4,5- Tetrasubstituted-1H-Imidazoles Under MW Irradiation. J Chem Sci 2011; 123: 421-6. [DOI:10.1007/s12039-011-0097-0]
85. Malik GM, Tailor JH, Zadafiya SK, et al. Synthesis And Biological Activity Of Triazolo Derivative Of Dibenzothiazepine. Chem Biol Interface 2015; 5(3): 208-18.
86. Brahmayya M, Venkateswararao B, Krishnarao D, et al. Synthesis And Fungicidal Activity Of Novel 5-Aryl-4-Methyl-3yl (Imidazolidin-1yl Methyl, 2-Ylidene Nitro Imine) Isoxazoles. J Pharm Res 2013; 7(6): 516-9. [DOI:10.1016/j.jopr.2013.04.057]
87. Salhi L, Bouzroura-Aichouche S, Benmalek Y, et al. An Efficient Conversion Of Maleimide Derivatives To 2 - Thioxo Imidazolidinones. Org Commun 2013; 6(2): 87-94.
88. O'Neil, Smith M, HeckelmanPE, et al. The Merck Index. 13th ed. Merck & Co Inc, 2001, 1785, 10074.
89. Mavrova AT, Vuchev D, Anichina K, et al. Synthesis, Antitrichinnellosis And Antiprotozoal Activity Of Some Novel Thieno[2,3-D] Pyrimidin-4(3H)-Ones Containing Benzimidazole Ring. Eur J Med Chem 2010; 45(12): 5856-61. [DOI:10.1016/j.ejmech.2010.09.050] [PMID]
90. Zhang SL, Damu GL, Zhang L, et al. Synthesis And Biological Evaluation Of Novel Benzimidazole Derivatives And Their Binding Behavior With Bovine Serum Albumin. Euro J Med Chem 2012; 55: 164-75. [DOI:10.1016/j.ejmech.2012.07.015] [PMID]
91. Zhang WW, Duan XJ, Huang HL, et al. Evaluation Of 28 Marine Algae From The Qingdao Coast For Antioxidative Capacity And Determination Of Antioxidant Efficiency And Total Phenolic Content Of Fractions And Subfractions Derived From Symphyocladial Atiuscula (Rhodomelaceae). J Appl Phycol 2007; 19(2): 97-108. [DOI:10.1007/s10811-006-9115-x]
92. Behbehani H, Ibrahim HM, Makhseed S, et al. 2-Aminothiophenes As Building Blocks In Heterocyclic Synthesis Synthesis And Antimicrobial Evaluation Of A New Class Of Pyrido 1,2-A Thieno 3,2-Epyrimidine Quinoline And Pyridin-2-One Derivatives. Eur J Med Chem 2012; 52: 51-65. [DOI:10.1016/j.ejmech.2012.03.004] [PMID]
93. Hastler CM, Kundrat S, Wool D. Functional Foods And Cardiovascular Disease. Curr Atheroscler Rep 2000; 2: 467-75. [DOI:10.1007/s11883-000-0045-9] [PMID]
94. Shiri M, Nejatinejhad-Arani A, Faghihi Z, et al. Synthesis and Biological Evaluation of Novel Quinoline Derivatives as Antibacterial and Antifungal Agents. Org Chem Res 2016; 2(2): 113-9.
95. Watson AA, Fleet GW, Asano N, et al. Polyhydroxylated Alkaloids Ð Natural Occurrence And Therapeutic Applications. Phytochemistry 2001; 56(3): 265-95. [DOI:10.1016/S0031-9422(00)00451-9]
96. Gutiérrez M, Arévaloa B, Martínezb G, et al. Synthesis, Molecular Docking And Design Of Tetrahydroquinolines As Acetylcholinesterase Inhibitors. J Chem Pharm Res 2015; 7(3): 351-8.
97. Holla B, Mahalinga M, Karthikeyan MS, et al. Synthesis Of Some Novel Pyrazolo[3,4-D] Pyrimidine Derivatives As Potential Antimicrobial Agents. Bioorg Med Chem 2006; 14(6): 2040-7. [DOI:10.1016/j.bmc.2005.10.053] [PMID]
98. Balsano C, Alisi A. Antioxidant Effects Of Natural Bioactive Compounds. Curr Pharm Des 2009; 15(26): 3036-73. [DOI:10.2174/138161209789058084] [PMID]
99. Srivastava A, Pandeya SN. Indole: A Versatile Nucleus In Pharmaceutical Field. Int J Curr Pharma Rev Res 2011; 1(3): 1-17. [DOI:10.4103/2230-973X.76724] [PMID] [PMCID]
100. Chandra T, Garg N, Kumar A. Synthesis And Anti-Inflammatory Activity Of Indole Derivatives. Int J Chem Tech Res 2010; 2(2): 762-73.
101. Dubey PK, Kumar VT. Synthesis Of Indole Derivatives As Potential COX-2 Inhibitors. Ind J Chem 2006; 45: 2128-32.
102. Rani P, Srivastava VK, Kumar A. Synthesis And Antiinflammatory Activity Of Heterocyclic Indole Derivatives. Eur J Med Chem 2004; 39(5): 449-52. [DOI:10.1016/j.ejmech.2003.11.002] [PMID]
103. Mehta DS, Sikotra KH, Shah HV. Synthesis And Biological Screening Of Some New Novel Indole Derivatives. Indian J Chem 2005; 44B(12): 2594-7.
104. Dharmendra K, Narendra K, Taruna S, et al. Synthesis Of Pharmacologically Active 2- Phenyl Sulpha/Substituted Indole. Int J Eng Sci Tech 2010; 2(7): 2553-7.
105. Sharma PP, Pandeya SN, Roy RK, et al. Synthesis And Anticonvulsant Activity Of Some Novel Isatin Schiff's Bases. Int J Chem Tech Res 2009; 1(3): 758-63.
106. Bell MR, Hoppe JO, Lape HE, et al. Antihypertensive Activity Of 7-Azoindole-3- Acetamidoxime And Indole-1-Acetadoxime. Cell Mol Life Sci 1967; 23(4): 298-9. [DOI:10.1007/BF02135698] [PMID]
107. Natah SS, Hussien KR, Tuominen JA, et al. Metabolic Response To Lactitol And Xylitol In Healthy Men. Am J Clin Nutr 1997; 65(4): 947-50. [DOI:10.1093/ajcn/65.4.947] [PMID]
108. Cheng KK, Ling HZ, Zhang JA, et al. Strain Isolation And Study On Process Parameters For Xylose- To- Xylitol Bioconversion. Biotechnol Biotec Eq 2010; 24(1): 1606-11. [DOI:10.2478/V10133-010-0013-7]
109. Zakerin AR, Ahmadi E, Fasihi Ramandi M, et al. The Effects Of Ecologic Condition On Antimicrobial Activity Of Endemic Herbal Extracts In Fars Province. J Fasa Univ Med Sci 2015; 5(1): 111-9. (Persian)
110. Wijesekara I, Pangestuti R, Kim SK. Biological Activities And Potential Health Benefits Of Sulfated Polysaccharides Derived From Marine Algae. Carbohydr Polym 2011; 84(1): 14-21. [DOI:10.1016/j.carbpol.2010.10.062]
111. Luo HY, Wang B, Yu CG, et al. Evaluation Of Antioxidant Activities Of Five Selected Brown Seaweeds From China. J Med Plant Res 2010; 4(23): 2557-65. [DOI:10.5897/JMPR10.609]
112. Yadegarinia D, Gachkar L, Rezaei MB, et al. Biochemical Activities Of Iranian Mentha Piperita L. And Myrtus Communis L. Essential Oils. Phytochemistry 2006; 67(12): 1249-55. [DOI:10.1016/j.phytochem.2006.04.025] [PMID]
113. Shukla Sh, Mehta A, Bajpai VK, et al. In Vitro Antioxidant Activity And Total Phenolic Content Of Ethanolic Leaf Extract Of Stevia Rebaudiana Bert. Food Chem Toxicol 2009; 47(9): 2338-43. [DOI:10.1016/j.fct.2009.06.024] [PMID]
114. Namvar F, Baharara J, Mahdi AA. Antioxidant And Anticancer Activities Of Selected Persian Gulf Algae. Indian J Clin Biochem 2014; 29(1): 13-20. [DOI:10.1007/s12291-013-0313-4] [PMID] [PMCID]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalifeh T, Vazirizadeh A, Mohebbi G H, Barmak A R, Darabi A H. Determination of some Nutraceutical Compounds, Amino Acids and Fatty acids Present in the Extracts of Sargasum boveanum Algae Obtained from the Coastal Waters of Central Bushehr, Iran. Iran South Med J. 2021; 24 (2) :134-159
URL: http://ismj.bpums.ac.ir/article-1-1443-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 24, Issue 2 (Iranian South Medical Journal 2021) Back to browse issues page
دانشگاه علوم پزشکی بوشهر، طب جنوب ISMJ

Iranian South Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License which allows users to read,
copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly

Copyright © 2022, Iranian South Medical Journal| All Rights Reserved

Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4419