[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 19, Issue 4 (Iranian South Medical Journal 2016) ::
Iran South Med J 2016, 19(4): 662-703 Back to browse issues page
The toxinology of sea snakes: A systematic review
Gholamhossein Mohebbi 1, Ramin Seyedian 2, Iraj Nabipour 2
1- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , mohebbihsn@yahoo.com
2- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
Abstract:   (3679 Views)

Background: Sea snakes belong to Hydrophiidae family mainly are found in tropical and subtropical waters of the world including the Persian Gulf. Their highly lethal venoms are more potent than snakes with terrestrial origin and contain complex mixtures of organic and inorganic bioactive substances, such as enzyme, and non-enzymatic proteins. There were limited studies on the venoms and toxins of sea snake; hence, the aim of this systematic review was to investigate the toxinological dimensions of sea snakes.

Materials and Methods: In order to investigate of the toxins of sea snakes,  the “Hydrophis schistosus toxin", "Hydrophis cyanocinctus toxin", " Hydrophis lapemoides toxin", "Hydrophis spiralis toxin", and "Lapemis curtus toxin " terms were searched separately, in "PubMed database", in 10/08/2016  which obtained 32, 9, 2, 2 and 4 papers, respectively. The "Hydrophis gracilis toxin" term had no any results.  For the “Hydrophis gracilis" term, two studies were obtained. The first one related to the sea snakes phylogenetic characteristics and the second one shared with other search results and well-connected with the issue. Some papers were similar in different searches. Of these, those studies were selected that had direct relevance to the subject  .

Results: The main isolated toxins from different sea snakes venoms included three-finger toxin (3FTx (short chain neurotoxins isoforms: AAL54893, AAL54892, ABN54806; long chain neurotoxins isoforms: AAL54894, AAL54895, P68416 , ABN54805), pelamitoxin (P62388), phospholipase A2 (both the basic and acidic PLA2), two phospholipases A2 (PLA2-H1 and H2), cysteine-rich secretory protein (CRISP), snake venom Zn2+-metalloproteinase (SVMP), L-amino acid oxidase (LAAO), 5′-nucleotidase, Hydrophitoxins a, b and c, Hydrophis ornatus a, Hydrophis lapemoides a, PDGF and α- neurotoxins of rSN311, rSN316 and rSN285. Each toxin and protein family presents a wide range of pharmacological activities. Some of these neurotoxins were linked to acetylcholine receptors in the neuromuscular junctions. These toxins showed protease (gelatinase and caseinase) activities, and/or they produce the myonecrosis and biochemical and histopathological changes.

Conclusion: There is scant variability in the venom composition in the same and different species of sea snakes. Our study revealed that there is a rather simple venom profile with an affinity towards a lethal mixture of high abundance of neurotoxins and PLA2s, and lower amounts of toxins such as CRISP, SVMP and LAAO.

Keywords: sea snake, venom, toxin, Persian Gulf
Full-Text [PDF 3441 kb]   (1163 Downloads)    
Type of Study: Review Systematic and Meta Analysis | Subject: Disorders of Systemic, Metabolic or Environmental Origin
Received: 2016/09/8 | Accepted: 2016/09/8 | Published: 2016/09/8
1. Iranian snakes. Young elites scientific site. (Accessed August 10, 2016, at http://www.njavan.com/forum/showthread.php? 102259-specific topic of snakes/page10.)
2. Gibbons JW, Scott DE, Ryan TJ, et al. The global decline of reptiles, deJa vu amphibians. BioSci 2000; 50(8): 653-6. [Google Scholar]
3. Subrata T, Abdulhadi AA, Hasibur R, et al. DNA barcoding: Tool for assessing species identification in Reptilia. JEZS 2016; 4(1): 332-7. [Google Scholar]
4. Harris JB. Phospholipases in snake venoms and their effects on nerve and muscle. Pharmacol Ther 1985; 31(1-2): 79-102. [PubMed] [Google Scholar]
5. Squamata-UCL. Squamata - lizards and snakes. (Accessed August 10, 2016, at http://www.ucl.ac.uk/museums-static/obl4he/vertebratediversity/squamata.html.)
6. Dehghani R, Mehrpour O, Shahi MP, et al. Epidemiology of venomous and semi-venomous snakebites (Ophidia: Viperidae, Colubridae) in the Kashan city of the Isfahan province in Central Iran. J Res Med Sci 2014; 19(1): 33-40. [PubMed] [Google Scholar]
7. Weinstein SA, Warrell DA, White J, et al. Venomous Bites from Non-Venomous Snakes: A Critical Analysis of Risk and Management of Colubrid Smake Bites. Burlington: Elsevier, 2011, 30-135. [Google Scholar]
8. Pajoumand A, Shariat Tarabghani A. Diagnosis and treatment of poisonin. Tehran: Chehr Publication, 1998, 96-130. (Persian)
9. Latifi M. The Snakes of Iran. 3rd ed. Tehran: Environment Protection organization, 2000, 27-92. (Persian)
10. Valenta J. Venomous Snakes: Envenoming, Therapy. New York: Nova Science Publishers, 2010, 27-49. [Google Scholar]
11. Rasmussen AR, Murphy JC, Ompi M, et al. Marine reptiles. PLoS One 2011; 6(11): e27373. [PubMed] [Google Scholar]
12. Kharin VE. Review of Sea Snakes of the genus Hydrophis sensu stricto (Serpentes: Hydrophiidae). Russ J Marine Biol 2004; 30(6): 387-94. [Google Scholar]
13. Kanishka DBU, Anslem de S, Bryan GF, et al. Molecular evidence that the deadliest sea snake Enhydrina schistosa (Elapidae: Hydrophiinae) consists of two convergent species. Mol Phylogenet Evol 2013; 66(1): 262-9. [PubMed] [Google Scholar]
14. Nobakht M. A Glance on medical principles, in exposure with dangerous animal of Persian Gulf, and providing some strategies relief and rescue of victims. (Accessed August 10, 2016, at http://health.ajaums.ac.ir/_health/documents.)
15. Nabipour I. The venomous animals of the Persian Gulf. Bushehr: Bushehr University of Medical Sciences Press, 2012, 98-108. (Persian) [Google Scholar]
16. Heatwole H. Sea Snakes. Sydney: University of New South Wales Press, 1999, 148.
17. Reptiledatabase. Hydrophis cyanocinctus. )Accessed August 10, 2016, at http://reptiledatabase.reptarium.cz/species?genus=Hydrophis&species=cyanocinctus&search_param=((genus%3D'I'.)
18. Rasmussen A, Sanders K, Lobo A. Hydrophis cyanocinctus. The IUCN Red List of Threatened Species 2010. )Accessed August 10, 2016, athttp://dx.doi.org/10.2305/IUCN.UK.2010-4.RLTS.T176726A7291386.en.)
19. Rasmussen AR. A preliminary study on sea snakes (Hydrophiidae) from Phuket Harbor, Phuket Island, Thailand. Nat Hist Bull Siam Soc 1989; 37(2): 209-25. [Google Scholar]
20. Rasmussen AR. Sea Snakes. In: Carpenter KE, Niem VH (Eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Food and Agriculture Organization of the United Nations, Rome. 2001, 6. [Google Scholar]
21. Baldwin R, Gardner AS. Marine reptiles. In the emirates: a natural history. Hellyer P, Aspinall S, editors. London, Trident Press, 2005, 242-51. [Google Scholar]
22. Soorae PS, Das HS, Al Mazrouei H. Records of sea snakes (subfamily Hydrophiinae) from the coastal waters of the Abu Dhabi Emirate, United Arab Emirates. Zoology in the Middle East 2006; 39(1): 109-10. [Google Scholar]
23. Craig J. Venter Institute. (Accessed August, 10, 2016, at http://www.jcvi.org/reptiles/search.php.)
24. Low BW. Handbook of experimental pharmacology: Snake Venoms. In: Lee CY, editors. Chap. 6, Vol. 52. Berlin: Springer-Verlag, 1979, 213-5. [Google Scholar]
25. Dufton MJ. Kill and cure: the promising future for venom research. Endeavour 1993; 17(3): 138-40. [PubMed] [Google Scholar]
26. Kardong KV. Snake toxins and venom: an evolutionary perspective. Herpetologica 1996; 52(1): 36-46. [Google Scholar]
27. Mariam K, Tu AT. Extremely low nerve growth facior (NGF) activity of sea snake (Hydrophiidae) venoms. J Nat Toxins 2002; 11(4): 393-8. [PubMed] [Google Scholar]
28. Tan CH, Tan KY, Lim SE, et al. Venomics of the beaked sea snake, Hydrophis schistosus: A minimalist toxin arsenal and its cross-neutralization by heterologous antivenoms. J Proteomics 2015; 126: 121-30. [PubMed] [Google Scholar]
29. Lomonte B, Pla D, Sasa M, et al. Two color morphs of the pelagic yellow-bellied sea snake, Pelamis platura, from different locations of Costa Rica: snake venomics, toxicity, and neutralization by antivenom. J Proteomics 2014; 103: 137-52. [PubMed] [Google Scholar]
30. Pahari S, Bickford D, Fry BG, et al. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes. BMC Evol Biol 2007; 27: 175. [PubMed]
31. Tan T, Xiang X, Qu H, et al. The study on venom proteins of Lapemis hardwickii by cDNA phage display. Toxicol Lett 2011; 206(3): 252-7. [PubMed] [Google Scholar]
32. Li M, Fry BG, Kini RM. Eggs-only-diet: its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). J Mol Evol 2005; 6(1): 81-9. [PubMed] [Google Scholar]
33. Tan CH, Tan NH, Tan KY, et al. Antivenom cross-neutralization of the venoms of Hydrophis schistosus and Hydrophis curtus, two common sea snakes in Malaysian waters. Toxins (Basel) 2015; 7(2): 572-81. [PubMed] [Google Scholar]
34. Damotharan P, Veeruraj A, Arumugam M, et al. Isolation and characterization of biologically active venom protein from sea snake Enhydrina schistosa. J Biochem Mol Toxicol 2015; 29(3): 140-7. [PubMed] [Google Scholar]
35. Petras D, Sanz L, Segura A, et al. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the Pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res 2011; 10(3): 1266-80. [PubMed] [Google Scholar]
36. Corrêa-Netto C, Junqueira-de-azevedo I, Silva D, et al. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallines. J Proteomics 2011; 74(9): 1795-809. [PubMed] [Google Scholar]
37. Rey-Suárez P, Núñez V, Gutiérrez JM, et al. Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica. J Proteomics 2011; 75(2): 655-67. [PubMed] [Google Scholar]
38. Calvete JJ, Ghezellou P, Paiva O, et al. Snake venomics of two poorly known Hydrophiinae: comparative proteomics of the venoms of terrestrialToxicocalamus longissimus and marineHydrophis cyanocinctus. J Proteomics 2012; 75(13): 4091-101. [PubMed] [Google Scholar]
39. Kularatne SA, Hettiarachchi R, Dalpathadu J, et al. Enhydrina schistose (Elapidae: Hydrophiinae) the most dangerous sea snake in Sri Lanka: three case studies of severe envenoming. Toxicon 2014; 77: 78-86. [PubMed] [Google Scholar]
40. Mebs D, Samejima Y. Myotoxic phospholipases A from snake venom, Pseudechis colletti, producing myoglobinuria in mice. Experientia 1980; 36(7): 868-9. [PubMed] [Google Scholar]
41. Chetty N, Du A, Hodgson WC, et al. The in vitro neuromuscular activity of Indo-Pacific sea-snake venoms: efficacy of two commercially available antivenoms. Toxicon 2004; 44(2): 193-200. [PubMed] [Google Scholar]
42. Brook GA, Torres LF, Gopalakrishnakone P, et al. Effects of phospholipase of Enhydrina schistose venom on nerve, motor end-plate and muscle of the mouse. Q J Exp Physiol 1987; 72(4): 571-91. [PubMed] [Google Scholar]
43. Tan NH. Acidic phospholipases A2 from the venom of common sea snakeEnhydrina schistosa. Biochim Biophys Acta 1982; 717(3): 503-8. [PubMed] [Google Scholar]
44. Gawade SP, Gaitonde BB. Isolation and characterisation of toxic components from the venom of the common Indian sea snake (Enhydrina schistosa). Toxicon 1982; 20(4): 797-801. [PubMed] [Google Scholar]
45. Yu NT, Lin TS, Tu AT. Laser Raman scattering of neurotoxins isolated from the venoms of sea snakes Lapemis hardwickii and Enhydrina schistosa. J Biol Chem 1975; 250(5): 1782-5. [PubMed] [Google Scholar]
46. Mackessy SP, Tu AT. Biology of the sea snakes and biochemistry of their venoms. In: Tu AT, editor. Toxin-related Diseases: Poisons Originating from Plants, Animals and Spoilage. New Delhi: Oxford & IBH Publishing Co, 1993, 305-51. [Google Scholar]
47. Tamiya N, Yagi T. Studies on sea snake venoms. Proc Jpn Acad Ser B Phys Biol Sci 2011; 87: 41-52. [PubMed] [Google Scholar]
48. Calvete JJ, Juárez P, Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom 2007; 42(11): 1405-14. [PubMed] [Google Scholar]
49. White J. Clinical toxicology of snakebite in Australia and New Guinea. In: Meier J, White J, editors. Handbook of clinical toxicology of animal venoms and poisons. Boca Raton: CRC Press, 1995, 595-617. [Google Scholar]
50. Peng LS, Zhong XF, Huang YS, et al. Molecular cloning, expression and characterization of three short chain alpha-neurotoxins from the venom of sea snake Hydrophiinae Hydrophis cyanocinctus Daudin. Toxicon 2003; 42(7): 753-61. [PubMed] [Google Scholar]
51. Atassi MZ. Postsynaptic-neurotoxin-acetylcholine receptor interaction and the binding sites on the two molecules. In: Tu AT, editors. Handbook of Natural Toxins: Reptile Venoms and Toxins. New York: Marcel Dekker, 1995, 53-83. [Google Scholar]
52. Ali SA, Alam JM, Abbasi A, et al. Sea snake Hydrophis cyanocinctus venom. II. Histopathological changes, induced by a myotoxic phospholipase A2 (PLA2-H1). Toxicon 2000; 38(5): 687-705. [PubMed] [Google Scholar]
53. Ali SA, Alam JM, Stoeva S, et al. Sea snake Hydrophis cyanocinctus venom. I. Purification, characterization and N-terminal sequence of two phospholipases A2. Toxicon 1999; 37(11): 1505-20. [PubMed] [Google Scholar]
54. Vishwanath BS, Kini RM, Gowda TV. Characterization of three edema-inducing phospho-lipase A2 enzymes from habu (Trimeresurus Flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon 1987; 25(5): 501-15. [PubMed] [Google Scholar]
55. Davidson FF, Dennis EA. Evolutionary relationships and implications for the regulation of phospholipase A2 from snake venom to human secreted forms. J Mol Evol 1990; 31(3): 228-38. [PubMed] [Google Scholar]
56. Liu CS, Huber GS, Lin CS, et al. Fractionation of toxins from Hydrophis cyanocinctus venom and determination of amino acid composition and end groups of hydrophitoxin a. Toxicon 1973; 11(1): 73-9. [PubMed] [Google Scholar]
57. Tu AT, Hoxo BS. Purification and chemical studies of a toxin from the venom of Lapemia hardwickü (Hardwick's sea snake). J Biol Chem 1971; 246(9): 2772-9. [PubMed] [Google Scholar]
58. Yang CC, Chance CC, Hayashi K, et al. Amino acid composition and end group analysis of cobrotoain. Toxicon 1969; 7(1): 43-7. [PubMed] [Google Scholar]
59. Liu CS, Blackwell RQ. Hydrophitoxin b from Hydrophis cyanocinctus venom. Toxicon 1974; 12(5): 543-6. [PubMed] [Google Scholar]
60. Tamiya N, Maeda N, Cogger HG. Neurotoxins from the venoms of the sea snakes Hydrophis ornatus and Hydrophis lapemoides. Biochem J 1983; 213(1): 31-8. [PubMed] [Google Scholar]
61. Alam JM, Qasim R. Changes in serum components induced by venoms of marine animals. Pak J Pharm Sci 1993; 6(1): 81-7. [PubMed] [Google Scholar]
62. Reid HA. Myoglobinuria and sea- snake bite poisoning. Brit Med J 1961; 1(5235): 1284-9. [PubMed] [Google Scholar]
63. Marsden AT, Reid HA. Pathology of sea-snake poisoning. Br Med J 1961; 1(5235): 1290-3. [PubMed] [Google Scholar]
64. Amarasekera N, Jayawardena A, Ariyaratnam A, et al. Bites of a sea snake (Hydrophis spiralis): a case report from Sri Lanka. J Trop Med Hyg 1994; 97(4): 195-8. [PubMed] [Google Scholar]
65. Sanders KL, Lee MS, Mumpuni Bertozzi T, et al. Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae). Mol Phylogenet Evol 2013; 66(3): 575-91. [PubMed] [Google Scholar]
66. Karthikeyan R, Karthigayan S, Sri Balasubashini M, et al. Inhibition of Hep2 and HeLa cell proliferation in vitro and EAC tumor growth in vivo by Lapemiscurtus (Shaw 1802) venom. Toxicon 2008; 51(1): 157-61. [PubMed] [Google Scholar]
67. Ali SA, Alam JM, Stoeva S, et al. Sea snake Hydrophis cyanocinctus and N-terminal sequence of two phospholipases A2. Toxicon 1999; 37(11): 1505-20. [PubMed] [Google Scholar]
68. Karthikeyan R, Karthigayan S, Sri Balasubashni M, et al. Histopathological changes induced in mice after intramuscular injection of venom from spin-bellied sea snake, Lapemis curtus (Shaw, 1802). J Pharmacol Toxicol 2007; 2(4): 307-18. [Google Scholar]
69. Abu-Sinna G, Esmat AY, Al-Zahaby AA, et al. Fractionation and characterization of Cerastes cerastes cerastes snake venom and the antitumor action of its lethal and non-lethal fractions. Toxicon 2003; 42(2): 207-15. [PubMed] [Google Scholar]
70. Hogland HC. Hematological complications of cancer chemotherapy. Semin Oncol 1982; 9(1): 95-102. [PubMed] [Google Scholar]
71. Yang RS, Tang CH, Chuang WJ, et al. Inhibition of tumor formation by snake venom disintegrin. Toxicon 2005; 45(5): 661-9. [PubMed] [Google Scholar]
72. Mora R, Valverde B, Díaz C, et al. A Lys49 phospholipase A2 homologue from Bothrops asper snake venom induces proliferation, apoptosis and necrosis in a lymphoblastoid cell line. Toxicon 2005; 45(5): 651-60. [PubMed] [Google Scholar]
73. Sun P, Ren XD, Zhang HW, et al. Serum from rabbit orally administered cobra venom inhibits growth of implanted hepatocellular carcinoma cells in mice. World J Gastroenterol 2003; 9(11): 2441-4. [PubMed] [Google Scholar]
74. Araya C, Lomonte B. Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biol Int 2007; 31(3): 263-8. [PubMed] [Google Scholar]
75. Zhou Q, Sherwin RP, Parrish C, et al. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix, inhibits breast cancer progression. Breast Cancer Res Treat 2000; 61(3): 249-60. [PubMed] [Google Scholar]
76. Zhong XF, Peng LS, Wu WY, et al. Identification and functional characterization of three postsynaptic short-chain neurotoxins from Hydrophiinae, Lapemis hardwickii gray. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2001; 33(4): 457-62. [PubMed] [Google Scholar]
77. Yang WL, Wei JW, Zhong XF, et al. Diversity of PLA(2) genes from sea snake Lapemis hardwickii gray venom. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2001; 33(3): 345-50. [PubMed] [Google Scholar]
78. Bailey GS, Banks BE, Pearce FL, et al. A comparative study of nerve growth factors from snake venoms. Comp Biochem Physiol B 1975; 51(4): 429-38. [PubMed] [Google Scholar]
79. Tokunaga Y, Yamazaki Y, Morita T. Specific distribution of VEGFF in Viperinae snake venoms: isolation and characterization of a VGEF-F from the venom of Daboia russelli siamensis. Arch Biochem Biophys 2005; 439(2): 241-7. [PubMed] [Google Scholar]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebbi G, Seyedian R, Nabipour I. The toxinology of sea snakes: A systematic review . Iran South Med J. 2016; 19 (4) :662-703
URL: http://ismj.bpums.ac.ir/article-1-822-en.html

Volume 19, Issue 4 (Iranian South Medical Journal 2016) Back to browse issues page
دانشگاه علوم پزشکی بوشهر، طب جنوب ISMJ

Iranian South Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License which allows users to read,
copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly

Copyright © 2017, Iranian South Medical Journal| All Rights Reserved

Persian site map - English site map - Created in 0.06 seconds with 31 queries by YEKTAWEB 3790