Volume 19, Issue 4 (Iranian South Medical Journal 2016)                   Iran South Med J 2016, 19(4): 704-735 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebbi G, Vazirizadeh A, Nabipour I. Sea urchin: toxinology, bioactive compounds and its treatment management. Iran South Med J 2016; 19 (4) :704-735
URL: http://ismj.bpums.ac.ir/article-1-823-en.html
1- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , mohebbihsn@yahoo.com
2- Department of Marine Biotechnology, The Persian Gulf Research and Studies Center, The Persian Gulf University, ,Bushehr,Iran
3- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
Abstract:   (16870 Views)

Background: The sea urchins are classified in the echinoderms category because of their spiny skin. Saponins are the major responsible metabolites for Echinodermata biological activities . As mentioned before, about 80 species of sea urchins are venomous for human. Their spine, pedicellariae, and some other organs such as gonads and coelomic fluids contain different toxins and bioactive compounds. This review study have evaluated toxinology and bioactive compounds from the extracts, and treatment management of these venomous animals.

Results: Contractin A, echinochrome A, echinometrin, major yolk protein (MYP), centrocins (I, II(, cathepsin B/X, strongylostatins (I,II), vitellogenin, UT841 toxin, spinochrome, and pedoxin as the prosthetic group of peditoxin are the most important compounds obtained from these animals.

Some people show poisoning symptoms following the ingestion of sea urchin gonads, especially during the breeding season. Some of these symptoms included allergies symptoms, as the first symptoms, nausea, diarrhea, vomiting, epigastric distress, severe headache, swelling of the lips and mouth, salivation, abdominal pain and some systemic symptoms such as hypotension, numbness and weakness. The most injuries by sea urchin can cause by contact to spines, which can create the various complications such as granuloma, synovitis, arthritis, edema, hyperkeratosis and even neuroma. Injuries by pedicellaria may cause severe pain, local edema, bleeding, lethargy, weakness, tingling, joint pain, aphonia, dizziness, syncope, general muscle paralysis, respiratory distress, hypotension and, infrequently death. After the injury by sea urchin, removing the spines and pedicellariae should be done to minimize the contact with the venom source, and subsequently the management of wounds and poisoning symptoms, as quickly as possible.

Conclusion: The venoms of some sea urchins have toxins and bioactive molecules that produce toxicity effects on their victims by a variety of mechanisms. Despite the various studies in toxinology field, on these animals, the comprehensive studies that led to the identification of pure toxins from their crude venoms are handful and unfinished and it is important to do further studies on this field, in the future.

Full-Text [PDF 2134 kb]   (6504 Downloads)    
Type of Study: Review Systematic and Meta Analysis | Subject: Disorders of Systemic, Metabolic or Environmental Origin
Received: 2016/08/15 | Accepted: 2016/08/31 | Published: 2016/09/11

References
1. Haddad JV, Novaes SPMS, Miot HA, et al. Accidents caused by sea urchins-the efficacy of precocious removal of the spines in the prevention of complications. An Bras Derm 2001; 76: 677-81. [Google Scholar]
2. Rossetto AL, de Macedo Mora J, Haddad Junior V. Sea Urchin Granuloma. Rev Inst Med Trop S Paulo 2006; 48(5): 303-6. [PubMed] [Google Scholar]
3. Guilherme CR, Flávio SD, Domingos GN, et al. Injuries caused by aquatic animals in Brazil: an analysis of the data present in the information system for notifi able diseases. Rev Soc Bras Med Trop 2015; 48(4): 460-7. [PubMed] [Google Scholar]
4. Haddad V Jr, da Silveira FL, Cardoso JL, et al. A report of 49 cases of cnidarian envenoming from southeastern Brazilian coastal waters. Toxicon 2002; 40(10): 1445-50. [PubMed] [Google Scholar]
5. Haddad Junior V. Observation of initial clinical manifestations and repercussions from the treatment of 314 human injuries caused by black sea urchins (Echinometra lucunter) on the southeastern Brazilian coast. Rev Soc Bras Med Trop 2012; 45(3): 390-2. [PubMed] [Google Scholar]
6. Jafari M, Mohebbi GH, Vazirizadeh A, et al. Medical Management in Stonefish Envenomation in Bushehr Port. Iran South Med J 2014; 17(3): 496-505. (Persian) [Google Scholar]
7. O'neal RL, Halstead BW, Howard LD Jr. Injury to human tissues from sea urchin spines. Calif Med 1964; 101(3): 199-202. [PubMed] [Google Scholar]
8. Haddad V Jr. Environmental dermatology: skin manifestations of injuries caused by invertebrate aquatic animals. An Bras Dermatol 2013; 88(4): 496-506. [PubMed] [Google Scholar]
9. Isbister GK, Marine Toxinology. Menzies School of Health Research Darwin and Calvary Mater Newcastle, Australia. (Accessed June 1, 2016, at http://www.asiatox.org/6th%20APAMT%20pdf/Marine%20Toxinology.pdf.)
10. Harvey A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today 2000; 5(7): 294-300. [PubMed] [Google Scholar]
11. Sea Urchin available. (Accessed 5 June, 2016, at http://a-z-animals.com/animals/sea-urchin/.)
12. Khaleghi M, Safahieh A, Savari A, et al. Study of density and the distribution pattern and the sustainability of Sea urchin, (Stomopneustes variolaris: Echinoidea) In the intertidal zone Chabahar Gulf. Oceanolog 2012; 3(9): 9-15. (Persian) [Google Scholar]
13. Scheuer PJ. Bioorganic marine chemistry. New York: Springer-Verlag, 1988; 2: 28-34.
14. Stonik VA. Some terpenoid and steroid derivatives from echinoderms and sponges. Pure Appl Chem 1986; 58(3): 423-36. [Google Scholar]
15. Komori T, Sanechika Y, Ito Y, et al. Biologisch aktive Glykoside aus Asteroidea, I. Strukturen eines neuen Cerebrosidgemischs und von Nucleosiden aus dem Seestern Acanthaster planci Liebigs. Ann Chem 1980; 1980(5): 653-68. [Google Scholar]
16. Kornprobst JM. Encyclopedia of marine natural products. 2nd ed. USA: Wiley-Blackwell, Oxford, 2014, 1499-1599. (vol 3) [Google Scholar]
17. Jiao H, Shang X, Dong Q, et al., Polysaccharide constituents of three types of sea urchin shells and their anti-inflammatory activities. Mar Drugs 2015; 13(9): 5882-900. [PubMed] [Google Scholar]
18. Arasaki E, Muniz P, Pires-Vanin AM. A functional analysis of benthic macrofauna of the sao channel (southern Brazil). Mar Ecol 2004; 25(4): 249-63. [Google Scholar]
19. Coppard SE, Campbell AC. Toxonomic significance of test morphology in the echinoid genera Diadema Gray, 1825 and Echinothrix Peters, 1835 (Echinodermata). Zoosystema 2006; 28(1): 93-112. [Google Scholar]
20. Macfarlane K. Distribution of the benthic marine habitats in the northern region of the West Coast of Dominica. Inst Trop Mar Ecol Res 2007; 20: 30-48. [Google Scholar]
21. Fjukmoen Y. The shallow-water macro echinoderm fauna of nha trang bay (vietnam). status at the onset of protection of habitats. [dissertation]. Germany: University of Bergen, 2006. [Google Scholar]
22. Zarezadeh R. Dangerous marine animals of the Persian Gulf and Oman Sea. Tehran: Aquaculture Scientific Publisher, 2010, 12-40. (Persian)
23. Ziegler A, Faber C, Mueller S, Bartolomaeus T. Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel appraoch using magnetic resonance imaging. BMC Biology 2008; 6: 33. [PubMed] [Google Scholar]
24. Kimura A, Nakagawa H. Action of an extract from the sea urchin Toxopneustes pileolus on isolated smooth muscle. Toxicon 1980; 18(5-6): 689-93. [PubMed] [Google Scholar]
25. Nakagawa H, Kimura A. Partial purification and characterization of a toxic substance from pedicellariae of the sea urchin Toxopneustes pileolus. Jpn J Pharmacol 1982; 32(5): 966-8. [PubMed] [Google Scholar]
26. Kimura A, Nakagawa H, Hayashi H, et al. Seasonal changes in contractile activity of a toxic substance from the pedicellaria of the sea urchin Toxopneustes pileolus. Toxicon 1984; 22(3): 353-8. [PubMed] [Google Scholar]
27. Fujiwara T. On the poisonous pedicellariae of Toxopneustes pileolus. Annot Zool Jap 1935; 15: 62-69. [Google Scholar]
28. Sciani JM, Emerenciano AK, Cunha da Silva JR, et al. Initial peptidomic profiling of Brazilian sea urchins: Arbacia lixula, Lytechinus variegatus and Echinometra lucunter. J Venom Anim Toxins incl Trop Dis 2016; 22: 17. [PubMed] [Google Scholar]
29. McPherson BF. Studies on the biology of the tropical sea urchins Echinometra lucunter and Echinometra viridis. B Mar Sci 1969; 19(1): 194-213. [Google Scholar]
30. Moore HB, Jutare T, Bauer JC, et al. The biology of Lytechinus variegatus. B Mar Sci 1963; 13(1): 23-53. [Google Scholar]
31. Sciani JM, Sampaio MC, Zychar BC, et al. Echinometrin: A novel mast cell degranulating peptide from the coelomic liquid of Echinometra lucunter sea urchin. Peptides 2014; 53: 13-21. [PubMed] [Google Scholar]
32. Hirai Y, Yasuhara T, Yoshida H, et al. A new mastcell degranulating peptide “mastoparan” in the venom of Vespula lewisii. Chem Pharm Bull (Tokyo) 1979; 27(8): 1942-4. [PubMed] [Google Scholar]
33. Hider RC. Honeybee venom: a rich source of pharmacologically active peptides. Endeavour 1988; 12(2): 65-5. [PubMed] [Google Scholar]
34. Yamasaki A, Higaki H, Nakashima K, et al. Identification of a major yolk protein as an allergen in sea urchin roe. Acta DermVenereol 2010; 90(3): 235-8. [PubMed] [Google Scholar]
35. Rodriguez V, Bartolomé B, Armisén M, et al. Food allergy to Paracentrotus lividus (sea urchin roe). Ann Allergy Asthma Immunol 2007; 98(4): 393-6. [PubMed] [Google Scholar]
36. Macedo MS. Hipersensibilidade imediata. In: Calich V, Vaz C, editors. Imunologia. Rio de Janeiro: Brazil, 2009, 17-39.
37. Mendes EG, Abbud L, Umiji S. Cholinergic action of homogenates of sea urchin pedicellariae. Science 1963; 139(3553): 408-9. [PubMed] [Google Scholar]
38. Galinier R, Roger E, Sautiere PE, et al. Halocyntin and papillosin, two new antimicrobial peptides isolated from hemocytes of the solitary tunicate, Halocynthia papillosa. J Pept Sci 2009; 15(1): 48-55. [PubMed] [Google Scholar]
39. Rawlings ND, Waller M, Barrett AJ, et al. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2014; 40(D1): D503-9. [PubMed] [Google Scholar]
40. Brix K, Dunkhorst A, Mayer K, et al. Cysteine cathepsins: cellular roadmap to different functions. Biochimie 2008; 90(2): 194-207. [PubMed] [Google Scholar]
41. Sciani JM, Antoniazzi MM, Neves Ada C, et al. Cathepsin B/X is secreted by Echinometra lucunter sea urchin spines, a structure rich in granular cells and toxins. J Venom Anim Toxins Incl Trop Dis 2013; 19(1): 33. [PubMed] [Google Scholar]
42. Sciani JM, Antoniazzi MM, Neves Ada C, et al. Cathepsin B/X is secreted by Echinometra lucunter sea urchin spines, a structure rich in granular cells and toxins. J Venom Anim Toxins incl Trop Dis 2013, 19(1): 33. [PubMed] [Google Scholar]
43. Pettit GR, Hasler JA, Paull KD, et al. Antineoplastic agents. 76. The sea urchin Strongylocentrotus droebachiensis. J Nat Prod 1981; 44(6): 701-4. [PubMed] [Google Scholar]
44. Li C, Haug T, Styrvold OB, et al. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 2008; 32(12): 1430-40. [PubMed] [Google Scholar]
45. Li C, Blencke HM, Smith LC, et al. Two recombinant peptides, SpStrongylocins 1 and 2, from Strongylocentrotus purpuratus show antimicrobial activity against Gram-positive and Gram-negative bacteria. Dev Comp Immunol 2010; 34(3): 286-92. [PubMed] [Google Scholar]
46. Rast JP, Smith LC, Loza-Coll M, et al. Genomic insights into the immune system of the sea urchin. Science 2006; 314(5801): 952-6. [PubMed] [Google Scholar]
47. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol 2005; 6(6): 551-7. [PubMed] [Google Scholar]
48. Biré R, Trotereau S, Lemée R, et al. Hunt for Palytoxins in a Wide Variety of Marine Organisms Harvested in 2010 on the French Mediterranean Coast. Mar Drugs 2015; 13(8): 5425-46. [PubMed] [Google Scholar]
49. Arizza V, Giaramita FT, Parrinello D, et al. Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes.Comp Biochem Physiol A Mol Integr Physiol 2007; 147(2): 389-94. [PubMed] [Google Scholar]
50. Haddad V Jr, Lupi O, Lonza JP, et al. Tropical dermatology: marine andaquatic dermatology. J Am Acad Dermatol 2009; 61(5): 733-50. [PubMed] [Google Scholar]
51. Cervello M, Arizza V, Lattuca G, et al. Detection of vitellogenin in a subpopulation of sea urchin coelomocytes. Eur J Cell Biol 1994; 64(2): 314-9. [PubMed] [Google Scholar]
52. Havukainen H, Underhaug J, Wolschin F, et al. A vitellogenin polyserine cleavage site: highly disordered conformation protected from proteolysis by phosphorylation. J Exp Biol 2012; 215(Pt 11): 1837-46. [PubMed] [Google Scholar]
53. Sun C, Zhang S. Immune-relevant and antioxidant activities of vitellogenin and yolk proteins in fish review. Nutrients 2015; 7(10): 8818-29. [PubMed] [Google Scholar]
54. Anraku M, Kihara H, Hashimura S. A new sea urchin toxin and its effect on spontaneous transmitter release at frog neuromuscular junctions. Jpn J Physiol 1984; 34(5): 839-47. [PubMed] [Google Scholar]
55. Alender CB, Feigen GA, Tomita JT. Isolation and characterization of sea urchin toxin. Toxicon 1965; 3(1): 9-17. [PubMed] [Google Scholar]
56. Mebs D. A toxin from the sea urchin Tripneustes gratilla. Toxicon 1984; 22(2): 306-7. [PubMed] [Google Scholar]
57. Zhang Y, Abe J, Siddiq A, et al. UT841 purified from sea urchin (Toxopneustes pileolus) venom inhibits time-dependent (45)Ca(2+) uptake in crude synaptosome fraction from chick brain. Toxicon 2001; 39(8): 1223-9. [PubMed] [Google Scholar]
58. Nakagawa H, Tu AT, Kimura A. Purifcation and characterization of contractin A from the pedicellarial venom of sea urchin Toxopneustes pileolus. Arch Biochem Biophys 199; 284(2): 279-84. [PubMed] [Google Scholar]
59. Nakagawa H, Yanagihara N, Izumi F, et al. Inhibition of nicotinic acetylcholine receptor-mediated secretion and synthesis of catecholamines by sea urchin toxin in cultured bovine adrenal medullary cells. Biochem Pharmacol 1992; 44(9): 1779-85. [PubMed] [Google Scholar]
60. Chen J, Engle SJ, Seilhamer JJ, et al. Cloning and characterization of novel rat and mouse low molecular weight Ca21-dependent phospholipase A2s containing 16 cysteines. J Biol Chem 1994; 269(37): 23018-24. [PubMed] [Google Scholar]
61. Kuwabara S. Purification and properties of peditoxin and the structure of its prosthetic group, pedoxin, from the sea urchin Toxopneustes pileolus (Lamarck). J Biol Chem 1994; 269(43): 26734-8. [PubMed] [Google Scholar]
62. Shestak OP, Anufriev VP, Novikov VL. Preparative production of spinochrome E, a pigment of different sea urchin species. Nat Prod Commun 2014; 9(7): 953-6. [PubMed] [Google Scholar]
63. Shikov AN, Ossipov VI, Martiskainen O, et al. The offline combination of thin-layer chromatography and high-performance liquid chromatography with diode array detection and micrOTOF-Q mass spectrometry for the separation and identification of spinochromes from sea urchin (Strongylocentrotus droebachiensis) shells. J Chromatogr A 2011; 1218(50): 9111-4. [PubMed] [Google Scholar]
64. Amarowicz, R, Synowiecki J, Shahidi F. Sephadex LH-20 separation of pigments from shells of red sea urchin (Strongylocentrotus franciscanus). Food Chem 1994; 51(2): 227-9. [Google Scholar]
65. Utkina NK, Maksimov OB. Quinoid pigments of echinodermata VII. Anthraquinones of the starfish Henricia leviuscula. Chem Nat Comp 1979; 15(2): 124-7. [Google Scholar]
66. Kol'tsova EA, Denisenko VA, Maksimov OB. Quinoid pigments of echinodermata V. Pigments of the sea urchinStrongy locentrotus dröebachiensis. Chem Nat Compd 1978; 14(4): 371-4. [Google Scholar]
67. Kol'tsova EA, Chumak GN, Maksimov OB. Quinoid pigments of echinodermata III. Minor pigments of the sea urchin Strongylocentrotus nudus. Chem Nat Comp 1977; 13(2): 174-7. [Google Scholar]
68. Kuwahara R, Hatate H, Yuki T, et al. Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina. LWT-Food Sci Technol 2009; 42(7): 1296-300. [Google Scholar]
69. Hatate H, Murata H, HamaY, et al. Antioxidative activity of spinochromes extracted from shells of sea urchins. Fisher Sci 2002; 68(2): 1641-2. [Google Scholar]
70. Datta D, Talapatra SN, Swarnakar S. Bioactive compounds from marine invertebrates for potential medicines - an overview. Int Lett Natur Sci 2015; 7: 42-61. [Google Scholar]
71. Pozharitskaya ON, Shikov AN, Makaroca MN, et al. Antiallergic effects of pigments isolated from green sea urchin (Strongylocentrotus droebachiensis) shells. Planta Med 2013; 79(18): 1698-704. [PubMed] [Google Scholar]
72. Sea urchin poisoning. (Accessed June 3, 2016, at http://www.rightdiagnosis.com/s/sea_urchin_poisoning/intro.htm1.)
73. Nabipour I. The venomous animals of the Persian Gulf. Bushehr: Bushehr University of Medical Sciences Press, 2012, 32-46. (Persian) [Google Scholar]
74. How to Treat a Sea Urchin Sting (Accessed June 3, 2016, at http://www.wikihow.com/Treat-a-Sea-Urchin-Sting.)
75. William JD, Peter J, Dean SL. Sea urchin injuries to the hand: a case report and review of the literature. Iowa Orthop J 2010; 30: 153-6. [PubMed] [Google Scholar]
76. Lee SR, Pronto JR, Sarankhuu BE, et al. Acetylcholinesterase Inhibitory Activity of Pigment Echinochrome A from Sea Urchin Scaphechinus mirabilis. Mar Drugs 2014; 12(6): 3560-73. [PubMed] [Google Scholar]
77. Mahon N, Chan JC, Nizar B, et al. Sea urchin spine arthritis of the proximal interphalangeal joint of the hand: radiological, intraoperative and histopathological findings Nicola. Hand Surg 2014; 19(2): 261-4. [Google Scholar]
78. Shang XH, Liu XY, Zhang JP et al. Traditional Chinese medicine-sea urchin. Mini Rev Med Chem 2014; 14(6): 537-42. [PubMed] [Google Scholar]
79. Jiao H, Shang X, Dong Q4, et al. Polysaccharide constituents of three types of sea urchin shells and their anti-inflammatory activities. Mar Drugs 2015; 13(9): 5882-900. [PubMed] [Google Scholar]

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian South Medical Journal

Designed & Developed by: Yektaweb