[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 20, Number 3 (Iranian South Medical Journal 2017) ::
Iran South Med J 2017, 20(3): 287-300 Back to browse issues page
Phospholipase A2 activity of the Persian Gulf upside-down jellyfish venom (Cassiopea andromeda)
Gholamhossean Mohebbi1, Hossean Vatanpour2, Amir Vazirizadeh3, Ammar Maryamabadi4, Alireza Hasaninejad4, Samad Akbarzadeh1, Maryam Farrokhnia1, Afshar Bargahi1, Iraj Nabipour *5
1- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
2- Department of Pharmacology and Toxicology, School of Pharmacy, Shaheed Beheshti Medical Sciences University, Tehran, Iran
3- The Marine Biology and Fishery Science Department, Persian Gulf Institute, Persian Gulf University, Bushehr, Iran
4- Department of Chemistry, school of Sciences, Persian Gulf University, Bushehr, Iran
5- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran , inabipour@gmail.com
Abstract:   (258 Views)

Background: The venomous jellyfish Cassiopea andromeda can produce envenomation and different toxicological and biological effects by their nematocysts. The phospholipase A2 enzymes (PLA2) are toxic and induce various pharmacological effects including neurotoxicity, myotoxicity and anticoagulant activities. The main aim of the current project was to screen the in vitro PLA2 activity of the C. andromeda crude venom. To better understand the experimental result; a molecular docking study was also performed.

Materials and methods: The live specimens were collected from Nayband lagoon, by a trawl net, and separation of their tentacles was done according to Bloom 's et al., method. The PLA2 activity of crude venom was performed according to the acidimetric method of Tan and Tan. The lyophilized venom was subjected to Gas Chromatography/ Mass Spectroscopy, and the obtained structures were used for docking study against PLA2. The indoxam was considered as standard control.

Results: The PLA2 activity of the jellyfish crude venom was 413 ±0.08 µmol/min/mg. Analysis of the crude venom detected seven compounds (i-vii) using GC-MS. Docking data was also confirmed the experimental results. According to the docking results, the highest affinity (-6.7 (kcal/mol)) was observed in the compound “Pregn-5-ene-3,11-dione, 17,20:20,21 bis [methylenebis(oxy)]-, cyclic 3-(1,2-ethane diyl acetal”.

Conclusions: A high PLA2 level was found in the venom of C. andromeda. There was a good correlation between in vitro and in silico studies.

Keywords: Cassiopea andromeda, crude venom, Phospholipase A2, Persian Gulf
Full-Text [PDF 919 kb]   (105 Downloads)    
Type of Study: Original | Subject: Disorders of Systemic, Metabolic or Environmental Origin
Received: 2017/07/5 | Accepted: 2017/07/5 | Published: 2017/07/5
References
1. Burnett JW, Fenner PJ, Rifkin JF. Venomous and Poisonous Marine Animals: A Medical and Biological Handbook. Sydney: University of New South Wales Press, 1996, 63-306. [Google Scholar]
2. Haddad Junior V, Silveira FL, Migotto AE. Skin lesions in envenoming by cnidarians (Portuguese man-of-war and jellyfish): etiology and severity of accidents on the Brazilian Coast. Rev Inst Med Trop Sao Paulo 2012; 52(1): 47-50. [PubMed] [Google Scholar]
3. Montgomery L, Seys J, Mees J. To pee, or not to pee: a review on envenomation and treatment in European jellyfish species. Mar Drugs 2016; 14(7): E127. [Google Scholar]
4. Purcell JE, Uye S, Lo WT. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 2007; 350: 153-74. [Google Scholar]
5. Mohd Suan MA, Tan WL, Soelar SA, et al. Jellyfish stings on Langkawi Island, Malaysia. Med J Malaysia 2016; 71(4): 161-5. [PubMed] [Google Scholar]
6. Tibballs J. Australian venomous jellyfish, envenomation syndromes, toxins and therapy. Toxicon 2006; 48(7): 830-59. [PubMed] [Google Scholar]
7. Cazorla-Perfetti DJ, Loyo J, Lugo L, et al. Epidemiology of the Cnidarian Physalia physalis stings attended at a health care center in beaches of Adicora, Venezuela. Travel Med Infect Dis 2012; 10(5-6): 263-6. [PubMed] [Google Scholar]
8. Thaikruea L, Siriariyaporn P, Wutthanarungsan R, et al. Review of fatal and severe cases of box jellyfish envenomation in Thailand. Asia Pac J Public Health 2015; 27(2): NP1639-51. [PubMed] [Google Scholar]
9. Tardent P. The cnidarian cnidocyte, a high-tech cellular weaponry. BioEssays 1995; 17(4): 351-62. [Google Scholar]
10. Lotan A, Fishman L, Zlotkin E. Toxin compartmentation and delivery in the Cnidaria: the nematocyst’s tubule as a multiheaded poisonous arrow. J Exp Zool 1996; 275(6): 444-51. [PubMed] [Google Scholar]
11. Burnett JW, Long KO, Rubinstein HM. Beachside preparation of jellyfish nematocyst venom. Toxicon 1992; 30(7): 794-6.
12. De Donno A, Idolo A, Bagordo F, et al. Impact of Stinging Jellyfish Proliferations along South Italian Coasts: Human Health Hazards,Treatment and Social Costs. Int J Environ Res Public Health 2014; 11(3): 2488-503. [Google Scholar]
13. Tibballs J, Yanagihara AA, Turner HC, et al. Immunological and Toxicological Responses to Jellyfish Stings. Inflamm Allergy Drug Targets 2011; 10(5): 438-46. [PubMed] [Google Scholar]
14. Morabito R, Dossena S, la Spada G, et al. Heavy metals affect nematocysts discharge response and biological activity of crude venom in the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa). Cell Physiol Biochem 2014; 34(2): 244-54. [Google Scholar]
15. Harron H. The classification and distribution of the class Scyphozoa.. BI 375 - Biological Diversity Winter 1999, University of Oregon (Accessed April 30, 2017, at http://gladstone.uoregon.edu/~ghale/pdf/scyphozoa.pdf).
16. Mariottini GL, Pane L. Mediterranean jellyfish venoms: a review on scyphomedusae. Mar Drugs 2010; 8(4): 1122-52. [PubMed] [Google Scholar]
17. Nabipour I, Moradi M, Mohebbi GH. A first record on population of the alien venomous jellyfish, Cassiopea andromeda (Forsskal, 1775) (Cnidaria: Scyphozoa: Rhizostomea) in the Nayband Lagoon from Bushehr-Iran (Persian Gulf). J Chem Pharm Res 2015; 7(3): 1710-3. [Google Scholar]
18. Nabipour I, Mohebbi GH, Vatanpour H, et al. Hematological parameters on the effect of the jellyfish venom Cassiopea andromeda in animal models. Data Brief 2017; 11: 517-21. [PubMed] [Google Scholar]
19. Pongprayoon U, Bohlin L, Wasuwat S. Neutralization of toxic effects of different crude jellyfish venoms by an extract of Ipomoea pes-caprae (L) R. Br. J Ethnopharmacol 1991; 35(1): 65-9. [PubMed] [Google Scholar]
20. Radwan FF, Burnett JW, Bloom DA, et al. A comparison of the toxinological characteristics of two Cassiopea and Aurelia species. Toxicon 2001; 39(2-3): 245-57. [PubMed] [Google Scholar]
21. Lejeusne C, Chevaldonné P, Pergent-Martini C, et al. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evolut 2010; 25(4): 250-60. [PubMed] [Google Scholar]
22. Mayer AG. Medusae of the Hawaiian Islands collected by the steamer Albatross in 1902. Bull US Fish Comm 1906; 23(pt 3): 1131-43. [Google Scholar]
23. Galil BS, Spanier E, Ferguson WW. The scyphomedusae of the Mediterranean coast of Israel, including two Lessepsian migrants new to the Mediterranean. Zoolog Mededel 1990; 64(7): 95-105. [Google Scholar]
24. Mohebbi GH, Farzadinia P, Vatanpour H, et al. Sub-acute toxicity of the alien Cassiopea andromeda (forsskal, 1775) jellyfish venom, in rats. Ent Appl Sci Lett 2016; 3(2): 65-71. [Google Scholar]
25. Bloom DA, Burnett JW, Alderslade P. Partial purification of box jellyfish (Chironex fleckeri) nematocyst venom isolated at the beachside. Toxicon 1998; 36(8): 1075-85. [PubMed] [Google Scholar]
26. Nevalainen TJ, Peuravuori HJ, Quinn RJ, et al. Phospholipase A2 in Cnidaria. Comparat Biochem Physiol Part B 2004; 139(4): 731-5. [PubMed] [Google Scholar]
27. Tan NH, Tan CS. Acidimetric assay for phospholipase a using egg yolk suspension as substrate. Anal Biochem 1988; 170(2): 282-8. [PubMed] [Google Scholar]
28. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian09, R. A.1. Gaussian Inc., Wallingford CT, 2009.
29. Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 2011; 39(Web Server issue): W270-W277. [Google Scholar]
30. Mohebbi GH, Nabipour I, Vazirizadeh A. Neurotoxic syndromes in marine poisoning; a Review. Iran South Med J 2014; 17(3):451-75. (Persian) [Google Scholar]
31. Kalauni SK, Choudhary MI, Khalid A, et al. New cholinesterase inhibiting steroidal alkaloids from the leaves of Sarcococca coriacea of Nepalese origin. Chem Pharm Bull 2002; 50(11): 1423-6. [PubMed] [Google Scholar]
32. Ayed Y, Dellai A, Mansour HB, et al. Analgesic and antibutyryl cholinestrasic activities of the venom prepared from the Mediterranean jellyfish Pelagia noctiluca (Forsskal, 1775). Ann Clin Microbiol Antimicrob 2012; 11(1): 11-5. [PubMed] [Google Scholar]
33. Lee H, Jung ES, Kang C, et al. Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity. Toxicon 2011; 58(3): 277-84. [PubMed] [Google Scholar]
34. Taheri N, Mohebbi GH, Vazirizadeh A, et al. Clinical manifestations and managements in jellyfish envenomation; A systematic review. Iran South Med J 2013; 16(5): 338-58. (Persian) [Google Scholar]
35. Xiao L, He Q, Guo Y, et al. Cyanea capillata tentacle-only extract as a potential alternative of nematocyst venom: its cardiovascular toxicity and tolerance to isolation and purification procedures. Toxicon 2009; 53(1): 146-52. [PubMed] [Google Scholar]
36. Liang X, Beilei W, Ying L, et al. Cardiovascular Effect is independent of hemolytic toxicity of tentacle-only extract from the jellyfish Cyanea capillata. PLos One 2012; 7(8): e43096. [PubMed] [Google Scholar]
37. Ramasamy S, Isbister GK, Seymour JE, et al. The in vivo cardiovascular effects of the Irukandji jellyfish (Carukia barnesi) nematocyst venom and a tentacle extract in rats. Toxicol Lett 2005; 155(1): 135-41. [Google Scholar]
38. Toom PM, Larsen JB, Chan DS, et al. Cardiac effects of Stomolophus meleagris (cabbage head jellyfish) toxin. Toxicon 1975; 13(3): 159-64. [PubMed] [Google Scholar]
39. Winter KL, Isbister GK, Schneider JJ, et al. An examination of the cardiovascular effects of an 'Irukandji' jellyfish, Alatina nr mordens. Toxicol Lett 2008; 179(3): 118-23. [PubMed] [Google Scholar]
40. Feng J, Yu H, Li C, et al. Isolation and characterization of lethal proteins in nematocyst venom of the jellyfish Cyanea nozakii Kishinouye. Toxicon 2010; 55(1): 118-25. [PubMed] [Google Scholar]
41. Little M, Pereira PL, Carrette T, et al. Jellyfish responsible for Irukandji Syndrome. QJM. 2006; 99(6): 425-7. [PubMed] [Google Scholar]
42. Chung JJ, Ratnapala LA, Cooke IM, et al. Partial purification and characterization of a hemolysin (CAH1) from Hawaiian box jellyfish (Carybdea alata) venom. Toxicon 2001; 39(7): 981-90. [PubMed] [Google Scholar]
43. Endean R, Monks SA, Cameron AM. Toxins from the box-jellyfish Chironex fleckeri. Toxicon 1993; 31(4): 397-410. [PubMed] [Google Scholar]
44. Othman I, Burnett JW. Techniques applicable for purifying Chironex fleckeri (box-jellyfish) venom. Toxicon 1990; 28; 821-35. [PubMed] [Google Scholar]
45. Anja Z, Heike H, Daniel P, et al. A new enzyme-assay for PLA2 activity in jellyfish venom based on phosphorus detection using HPLC-CC-ICP-MS.2007.(Accessed April 23, 2017, at http://www.schulprojekt-klimawandel.de/imperia/md/content/gkss/institut_fuer_kuestenforschung/koc/poster/zimmermann_jellyblooms07_abstract.pdf).
46. Anderluh G, Macek P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 2002; 40(2): 111-24. [PubMed] [Google Scholar]
47. Santos-Filho NA, Silveira LB, Oliveira CZ, et al. A new acidic myotoxic, anti-platelet and prostaglandin I2 inductor phospholipase A2 isolated from Bothrops moojeni snake venom. Toxicon 2008; 52(8): 908-17. [PubMed] [Google Scholar]
48. Nevalainen TJ, Peuravuori HJ, Quinn RJ, et al. Phospholipase A2 in cnidaria. Comp Biochem Physiol B Biochem Mol Biol 2004; 139(4): 731-5. [PubMed] [Google Scholar]
49. Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 1994; 269(18): 13057-60. [PubMed] [Google Scholar]
50. Balsinde J, Winstead MV, Dennis EA. Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett 2002; 531(1): 2-6. [Google Scholar]
51. Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta 2006; 1761: 1246-59. [PubMed] [Google Scholar]
52. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294(5548): 1871-5. [PubMed] [Google Scholar]
53. Tsuboi K, Sugimoto Y, Ichikawa A. Prostanoid receptor subtypes. Prostaglandins Other Lipid Mediators 2002; 68: 535-56. [PubMed] [Google Scholar]
54. Moolenaar WH, van Meeteren LA, Giepmans BNG. The ins and outs of lysophosphatidic acid signaling. BioEssays 2004; 26(8): 870-81. [PubMed] [Google Scholar]
55. Prescott SM, Zimmerman GA, Stafforini DM, et al. Platelet-activating factor and related lipid mediators. Annu Rev Biochem 2000; 69: 419-45. [PubMed] [Google Scholar]
56. Nevalainen TJ, Haapamaki MM, Grönroos JM. Roles of secretory phospholipases A(2) in inflammatory diseases and trauma. Biochim Biophys Acta 2000; 1488 (1-2): 83-90. [PubMed] [Google Scholar]
57. Pruzanski W, Lambeau L, Lazdunsky M, et al. Differential hydrolysis of molecular species of lipoprotein phosphatidylcholine by groups IIA, V and X secretory phospholipases A2. Biochim Biophys Acta 2005; 1736(1): 38-50. [Google Scholar]
58. Enomoto A, Murakami M, Valentin E, et al. Redundant and segregated functions of granule-associated heparin-binding group II subfamily of secretory phospholipases A2 in the regulation of degranulation and prostaglandin D2 synthesis in mast cells. J Immunol 2000; 165(7): 4007-14. [PubMed] [Google Scholar]
59. Wei S, Ong WY, Thwin MM, et al. Group IIA secretory phospholipase A2 stimulates exocytosis and neurotransmitter release in pheochromocytoma-12 cells and cultured rat hippocampal neurons. Neuroscience 2003; 121(4): 891-8. [PubMed] [Google Scholar]
60. Juhl K, Efanov AM, Olsen HL, et al. Secretory phospholipase A2 is released from pancreatic beta-cells and stimulates insulin secretion via inhibition of ATP-dependent K+ channels. Biochem Biophys Res Commun 2003; 310(2): 274-79. [PubMed] [Google Scholar]
Send email to the article author

Add your comments about this article
Your username or email:

Write the security code in the box >



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebbi G, Vatanpour H, Vazirizadeh A, Maryamabadi A, Hasaninejad A, Akbarzadeh S, et al . Phospholipase A2 activity of the Persian Gulf upside-down jellyfish venom (Cassiopea andromeda). Iran South Med J. 2017; 20 (3) :287-300
URL: http://ismj.bpums.ac.ir/article-1-880-en.html
Volume 20, Number 3 (Iranian South Medical Journal 2017) Back to browse issues page
دانشگاه علوم پزشکی بوشهر، طب جنوب ISMJ

Iranian South Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License which allows users to read,
copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly

Copyright © 2017, Iranian South Medical Journal| All Rights Reserved

Persian site map - English site map - Created in 0.065 seconds with 867 queries by yektaweb 3461