Volume 23, Issue 1 (Iranian South Medical Journal 2020)                   Iran South Med J 2020, 23(1): 14-26 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Anoosha F, Seyedalipour B, Hoseini S. Toxicity of Nickel Nanoparticles and Nickel Chloride on Activity of Antioxidant Enzymes and Level of Lipid Peroxidation in Liver and Serum of Rats. Iran South Med J 2020; 23 (1) :14-26
URL: http://ismj.bpums.ac.ir/article-1-1239-en.html
1- Department of Cellular and Molecular Biology, School of Life Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
2- Department of Cellular and Molecular Biology, University of Mazandaran, Babolsar, Iran , b.alipour81@gmail.com
3- School of Veterinary Medicine, Islamic Azad University, Babol branch, Babol, Iran
Abstract:   (3343 Views)
Background: Rapid development of the nanotechnology industry requires that we understand the toxicity of nanoparticles and factors associated with their risks to living organisms. The aim of this study was to investigate the toxicity of nickel nanoparticles (Ni NPs) and nickel chloride on the activity of antioxidant enzymes in serum and liver of rats.
Materials and Methods: In this experimental study, 48 Wistar rats were randomly divided into 8 groups (n=6). The control group did not receive any treatment, a sham group (normal saline), and experimental groups received Ni NPs and nickel chloride at concentrations of 5, 15 and 25 mg/kg by intraperitoneal injection. After blood collection, liver tissue was isolated and homogenized to measure the activity of
antioxidant enzymes: glutathione (GSH) and malondialdehyde (MDA).
Results: Total antioxidant capacity of serum significantly decreased in NiONPs groups at doses of 5, 15, and 25 mg/kg (p=0.003, p=0.034, p=0.006) compared with the control, respectively. Furthermore, total antioxidant capacity in liver significantly decreased in NiONPs groups at doses of 5, 15, and 25 mg/kg (p=0.012, p=0.029, p=0.005), respectively. The mean serum and liver MDA levels of Ni NPs and NiCl2 groups significantly increased only at the dose of 25 mg/kg (p=0.03) and (p=0.014) compared to the control. The mean serum GST activity of Ni NPs groups significantly decreased at doses of 15 and 25 mg/kg (p=0.014) and (p=0.04) compared to the control, respectively.
Conclusion: Nickel nanoparticles probably induce the production of free radicals and oxidative stress. Decreased total antioxidant levels and increased MDA indicates oxidative stress of liver tissue.
Full-Text [PDF 860 kb]   (710 Downloads)    
Type of Study: Original | Subject: Biochemistry. Cell Biology and Genetics
Received: 2019/01/9 | Accepted: 2019/03/13 | Published: 2020/03/28

References
1. Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res 2016; 33(10): 2373-87. [DOI:10.1007/s11095-016-1958-5]
2. Ma L, Zhao J, Wang J, et al. The Acute Liver Injury in Mice Caused by Nano-Anatase TiO2. Nanoscale Res Lett 2009; 4(11): 1275-85. [DOI:10.1007/s11671-009-9393-8]
3. Skocaj M, Filipic M, Petkovic J, et al. Titanium Dioxide in Our Everyday Life; Is It Safe?. Radiol Oncol 2011; 45(4): 227-47. [DOI:10.2478/v10019-011-0037-0]
4. Doreswamy K, Shrilatha B, Rajeshkumar T, et al. Nickel-induced Oxidative Stress in Testis of Mice: Evidence of DNA Damage and Genotoxic Effects. J Androl 2004; 25(6): 996-1003. [DOI:10.1002/j.1939-4640.2004.tb03173.x]
5. Cempel M, Nikel G. Nickel: A Review of Its Sources and Environmental Toxicology. Polish J Environ Stud 2006; 15(3): 375-82. [Link]
6. Saini S, Nair N, Saini MR. Embryotoxic and Teratogenic Effects of Nickel in Swiss Albino Mice during Organogenetic Period. Biomed Res Int 2013: 701439. [DOI:10.1155/2013/701439]
7. Das KK, Buchner V. Effect of Nickel Exposure on Peripheral Tissues: Role of Oxidative Stress in Toxicity and Possible Protection by Ascorbic Acid. Rev Environ Health 2007; 22(2): 157-73. [DOI:10.1515/REVEH.2007.22.2.157]
8. Ha HL, Shin HJ, Feitelson MA, et al. Oxidative Stress and Antioxidants in Hepatic Pathogenesis. World J Gastroenterol 2010; 16(48): 6035-43. [DOI:10.3748/wjg.v16.i48.6035]
9. Iavicoli I, Leso V, Fontana L, et al. Toxicological Effects of Titanium Dioxide Nanoparticles: A Review of in Vitro Mammalian Studies. Eur Rev Med Pharmacol Sci 2011; 15(5): 481-508. [PubMed]
10. Sycheva L, Zhurkov S, Iurchenko V, et al. Investigation of Genotoxic and Cytotoxic Effects of Micro-and Nanosized Titanium Dioxide in Six Organs of Mice in Vivo. Mutat Res 2011; 726(1): 8-14. [DOI:10.1016/j.mrgentox.2011.07.010]
11. Afifi M, Almaghrabi OA, Kadasa NM. Ameliorative Effect of Zinc Oxide Nanoparticles on Antioxidants and Sperm Characteristics in Streptozotocin-Induced Diabetic Rat Testes. Biomed Res Int 2015; 2015: 153573. [DOI:10.1155/2015/153573]
12. Hadrup N, Lam HR. Oral Toxicity of Silver Ions, Silver Nanoparticles and Colloidal Silvers Review. Regul Toxicol Pharmacol 2014; 68(1): 1-7. [DOI:10.1016/j.yrtph.2013.11.002]
13. Fu PP, Xia Q, Hwang HM, et al. Mechanisms of Nanotoxicity: Generation of Reactive Oxygen Species. J Food Drug Anal 2014; 22(1): 64-75. [DOI:10.1016/j.jfda.2014.01.005]
14. Deknudt G, Leonard A. Mutagenicity Tests with Nickel Salts in the Male Mouse. Toxicology 1982: 25(4): 289-92. [DOI:10.1016/0300-483X(82)90106-8]
15. Afifi M, Saddick S, Abu Zinada O. Toxicity of Silver Nanoparticles on the Brain of Oreochromis Niloticus and Tilapia Zillii. Saudi J Biol Sci 2016; 23: 754-60. [DOI:10.1016/j.sjbs.2016.06.008]
16. Eom HJ, Choi J. p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis as Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells. Environ Sci Technol 2010; 44(21): 8337-42. [DOI:10.1021/es1020668]
17. Honarvar F, Vaezi G, Nourani M, et al. Oxidant/Antioxidant Index Evaluation in the Rat Embryo Induced by Nano-Silver Particle. New Cell Mol Biotechnol J 2016; 6(23): 53-60. (Persian) [Link]
18. Layali E, Tahmasbpour E, Jorsaraei SGA. Effects of Silver Nanoparticles on Lipid Peroxidation and Quality of Sperm Parameters in Male Rats. J Babol Univ Med Sci 2016; 18(2): 48-55. [Link]
19. Valipour-Chahardah-Charic S, Kesmati M, Vahdati A, et al. Oxidative Stress Indices in Rat Hippocampus Using the Memory Deficit Model Induced by Zinc Oxide Nanoparticles. Feyz 2015; 19(1): 38-46. [Link]
20. Soofi Zamiri F, Hajinezhad M, Samzadeh Kermani A, et al. Comparison the effects of ZnO nanoparticles and ZnO nanocomposites on Lipid Peroxidation in Rats. J North Khorasan Univ Med Sci 2017; 9(2): 263-70. (Persian) [DOI:10.18869/acadpub.jnkums.9.2.263]
21. Chen CH, Huang Y, Lin TF. Lipid Peroxidation in Liver of Mice Administrated with Nickel Chloride. Biol Trace Elem Res 1998; 61(2): 193-205. [DOI:10.1007/BF02784030]
22. Stark G. Functional Consequences of Oxidative Membrane Damage. J Membr Biol 2005; 205(1): 1-16. [DOI:10.1007/s00232-005-0753-8]
23. Mirzazadeh E, Khezri S, Abtahi Froushani SM. Effects of Quercetin on Improving the Damage Caused by Free Radicals in the Rat Models of Multiple Sclerosis. Iran South Med J 2019; 22(1): 1-15. [DOI:10.29252/ismj.22.1.1]
24. Parveen R, Baboota S, Ali J, et al. Effects of Silymarin Nanoemulsion Against Carbon Tetrachloride-induced Hepatic Damage. Arch Pharm Res 2011; 34(5): 767-74. [DOI:10.1007/s12272-011-0510-8]
25. Koyu A, Gokcimen A, Ozguner F, et al. Evaluation of the Effects of Cadmium on Rat Liver. Mol Cell Biochem 2006; 284(1-2): 81-5. [DOI:10.1007/s11010-005-9017-2]
26. Donskoy E, Donskoy M, Forouhar F, et al. Hepatic Toxicity of Nickel Chloride in Rats. Ann Clin Lab Sci 1986; 16(2): 108-17. [PubMed]
27. Kasprzak KS, Bare RM. In Vitro Polymerization of Histones by Carcinogenic Nickel Compounds. Carcinogenesis 1989; 10(3): 621-4. [DOI:10.1093/carcin/10.3.621]
28. Kanti Das T, Rina Wati M, Fatima-Shad K. Oxidative Stress Gated by Fenton and Haber Weiss Reactions and Its Association with Alzheimer 's Disease. Arch Neurosci 2014; 2(3): e20078. [DOI:10.5812/archneurosci.20078]
29. Ruas CBG, Carvalho CDS, Araujo HSS, et al. Oxidative stress biomarkers of exposure in the blood of cichlid species from a metalcontaminated river. Ecotoxicol Environ Saf 2008; 71(1):86-93. [DOI:10.1016/j.ecoenv.2007.08.018]
30. Kong L, Gao X, Zhu J, et al. Mechanisms involved in reproductive toxicity caused by nickel nanoparticle in female rats. Environ Toxicol 2016; 31(11): 1674-1683. [DOI:10.1002/tox.22288]
31. Masella R, Di Benedetto R, Varì R, et al. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 2005; 16(10): 577-586. [DOI:10.1016/j.jnutbio.2005.05.013]
32. Messarah M, Klibet F, Boumendjel A, et al. Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Exp Toxicol Pathol 2012; 64(3): 167-174. [DOI:10.1016/j.etp.2010.08.002]
33. Razavipour ST, Behnammorshedi M, Razavipour R, et al. The toxic effect of nickel nanoparticles on oxidative stress and inflammatory markers. Biomedical Research 2015; 26(2): 370-374. [Link]
34. Misra M, Rodriguez RE, Kasprzak KS. Nickel induced lipid peroxidation in the rat: correlation with nickel effect on antioxidant defense systems. Toxicology 1990; 64(1): 1-17. [DOI:10.1016/0300-483X(90)90095-X]
35. Krezel A, Szczepanik W, Sokołowska M, et al. Correlations between complexation modes and redox activities of Ni (II)-GSH complexes. Chem Res Toxicol 2003; 16(7): 855-864. [DOI:10.1021/tx034012k]

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian South Medical Journal

Designed & Developed by: Yektaweb